精英家教网 > 高中数学 > 题目详情
18.设集合A={x|x2+4x=0},B={x|x2+2ax+a(a-2)=0},求满足B⊆A的实数a的值组成的集合.

分析 由x2+4x=0,解得A={0,-4}.由x2+2ax+a(a-2)=0,可得:△=8a.对a分类讨论,利用集合之间的关系即可得出.

解答 解:由x2+4x=0,解得x=0或-4.∴A={0,-4}.
由x2+2ax+a(a-2)=0,可得:△=4a2-4a(a-2)=8a.
①a<0时,B=∅,满足B⊆A;
②a=0时,B={0},满足B⊆A;
③a>0时,∵B⊆A,则B=A={0,-4},∴$\left\{\begin{array}{l}{0-4=-2a}\\{0×(-4)=a(a-2)}\end{array}\right.$,解得a=2.
综上可得:a≤0或a=2.
∴满足B⊆A的实数a的值组成的集合是(-∞,0]∪{2}.

点评 本题考查了集合之间的关系、方程的解法,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\frac{tanA}{{a}^{2}}$=$\frac{tanB}{{b}^{2}}$,则△ABC的形状是(  )
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=3ax2+(b-2)x+5a+b是偶函数,且定义域为[a-2,a],则a+b=3,f(x)在区间上的最大值为10最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.四棱锥S-ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD.已知:∠ABC=45°,AB=2,BC=2$\sqrt{2}$,SB=SC,直线SD与平面ABCD所成角的正弦值为$\frac{\sqrt{11}}{11}$.O为BC的中点.
(1)证明:SA⊥BC;
(2)求二面角O-SA-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{1-x,0<x<1}\\{\sqrt{x-1},x≥1}\end{array}\right.$,若a<b<c,f(a)=f(b)=f(c),则实数a+3b+c的取值范围是(  )
A.(-∞,$\frac{11}{4}$-ln2]B.(-∞,$\frac{5}{4}$-ln2]C.(-∞,$\frac{5}{2}$-e${\;}^{\frac{1}{2}}$]D.(-∞,$\frac{15}{4}$-e${\;}^{\frac{1}{4}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的焦距为2,离心率为$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的标准方程;
(2)设椭圆C在y轴正半轴上的顶点为P,若直线l与椭圆C交于不同的两点A,B,椭圆C的左焦点F1恰为△PAB的垂心(即△PAB三条高所在直线的交点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知1≤lg$\frac{x}{y}$≤2,3≤lg$\frac{x^3}{{\root{3}{y}}}$≤4,则lg$\frac{x^2}{{\sqrt{y}}}$的范围为(  )
A.[2,3]B.[2,$\frac{23}{8}$]C.[$\frac{5}{16}$,$\frac{9}{16}$]D.[$\frac{27}{16}$,$\frac{9}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知定义在R上的奇函数y=f(x),对于?x∈R都有f(1+x)=f(1-x),当-1≤x<0时,f(x)=log2(-x),则函数g(x)=f(x)-2在(0,8)内所有的零点之和为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a∈R,且在($\frac{x}{2}$-$\frac{a}{\sqrt{x}}$)n的展开式中,第5项与第6项的二项式系数最大.
(1)若a=1,求展开式中的常数项;
(2)若展开式中x3的系数为63,求a的值.

查看答案和解析>>

同步练习册答案