精英家教网 > 高中数学 > 题目详情
(2008•宝坻区一模)设直线l:y=x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两个不同的点,与x轴相交于点F.
(1)证明:a2+b2>1;
(2)若F是椭圆的一个焦点,且以AB为直径的圆过原点,求a2
分析:(1)把直线l的方程与椭圆方程联立,利用△>0即可得出;
(2)以AB为直径的圆过原点?OA⊥OB?x1x2+y1y2=0,再利用根与系数的关系,即可得出.
解答:解:(1)∵直线l与椭圆相交,联立方程
y=x+1
b2x2+a2y2=a2b2

∴(a2+b2)x2+2a2x+a2-a2b2=0,
∵△=4a4-4(a2+b2)a2(1-b2)>0
a2-(a2+b2)(1-b2)>0

∴b2(a2+b2)>b2
∴a2+b2>1,
(2)设F(-c,0),c2=a2-b2依题意c=1,则a2-b2=1,
设交点A(x1,y1),B(x2,y2
由(1)知:△>0得
x1+x2=
-2a2
a2+b2
x1x2=
a2(1-b2)
a2+b2

以AB为直径的圆过原点,则OA⊥OB,从而x1x2+y1y2=0
即2x1x2+(x1+x2)+1=0,
把韦达定理式代入
2a2(1-b2)
a2+b2
-
2a2
a2+b2
=-1

a2>1解得:a2=1+
2
2
点评:直线与椭圆相交问题转化为方程联立得到△>0及其根与系数的关系、向量垂直与数量积的关系、圆的性质等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•宝坻区一模)设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)在平面直角坐标系中,不等式组
x+y-2≥0
x-y+2≥0
x≤2
表示的平面区域的面积为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)奇函数f(x)在区间[3,7]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则2f(-6)+f(-3)=
-15
-15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)如图,该程序运行后输出的结果为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•宝坻区一模)已知下列命题:
AB
+
BC
+
CA
=0;
②函数y=f(|x|-1)的图象向左平移1个单位后得到的函数图象解析式为y=f(|x|);
③函数y=f(1+x)的图象与函数y=f(1-x)的图象关于y轴对称;
④满足条件AC=
3
,B=60°,AB=1的三角形△ABC有两个.
其中正确命题的序号是

查看答案和解析>>

同步练习册答案