精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π.
(1)求f(x);
(2)若f(x0)=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,其中x0∈[0,$\frac{π}{2}$],求x0

分析 (1)由三角函数公式化简可得f(x)=$\frac{1}{2}$+sin(2ωx-$\frac{π}{6}$),由周期公式可得ω,可得解析式;
(2)由题意可得sin(2x0-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,结合x0∈[0,$\frac{π}{2}$]可得.

解答 解:(1)由三角函数公式化简可得:
f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)
=$\frac{1}{2}$(1-cos2ωx)+$\sqrt{3}$sinωxcosωx
=$\frac{1}{2}$-$\frac{1}{2}$cos2ωx+$\frac{\sqrt{3}}{2}$sin2ωx
=$\frac{1}{2}$+sin(2ωx-$\frac{π}{6}$),
由周期公式可得$\frac{2π}{2ω}$=π,解得ω=1,
∴f(x)=$\frac{1}{2}$+sin(2x-$\frac{π}{6}$);
(2)∵f(x0)=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$,∴sin(2x0-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
∵x0∈[0,$\frac{π}{2}$],∴2x0-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],
∴2x0-$\frac{π}{6}$=$\frac{π}{3}$或$\frac{2π}{3}$,解得x0=$\frac{π}{4}$或$\frac{5π}{12}$

点评 本题考查两角和与差的三角函数,涉及三角函数的周期性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若角α的终边经过点 P(1,2),则sin2α-cos2α=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,若输入的x值为$\frac{π}{3}$,则相应输出的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知动点M到点F(1,0)的距离与M到定直线x+1=0的距离相等,动点M的轨迹为C,过点F且倾斜角等于45°的直线与轨迹C交于A、B两点,O是坐标原点,则△OAB的面积等于(  )
A.3$\sqrt{2}$B.3$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某大学进行自主招生考试面试,需将每5位考生组成一组进行口头答题,每位考生可以从5个备选题目中任选1题口头作答,则恰有2个题目没有被某组5为考生选中的情况有(  )
A.2400种B.1500种C.400种D.60种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若点($\sqrt{2}$,2)在幂函数f(x)的图象上,点(2,$\frac{1}{2}$)在幂函数g(x)的图象上,定义h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$求函数h(x)的最大值及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A,B,C所对的边分别是a,b,c,求证:A=2B的充要条件是a2=b(b+c).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)=$\left\{\begin{array}{l}{a\sqrt{x},x≥0}\\{x+a-1,x<0}\end{array}\right.$在R上是增函数,则a的取值范围是0<a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.△ABC中,内角A,B,C的对边分别是a,b,c,已知a,b,c成等比数列,且cosB=$\frac{3}{4}$.
(1)求$\frac{c}{a}$的值;
(2)设$\overrightarrow{BA}$•$\overrightarrow{BC}$=$\frac{3}{2}$,求a+c的值.

查看答案和解析>>

同步练习册答案