精英家教网 > 高中数学 > 题目详情
双曲线(  )
A.B.C.D.
B
由于对称性,我们不妨取顶点,取渐近线为,所以由点到直线的距离公式可得,亦可根据渐近线倾斜角为450得到.
【考点定位】 本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知动点与定点的距离和它到直线的距离之比是常数,记的轨迹为曲线.
(I)求曲线的方程;
(II)设直线与曲线交于两点,点关于轴的对称点为,试问:当变化时,直线轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知,直线, 动点的距离是它到定直线距离的倍. 设动点的轨迹曲线为
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点的距离分别为,试判断是否为常数,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点是双曲线的左焦点,过且平行于双曲线渐近线的直线与圆交于点,且点在抛物线上,则该双曲线的离心率是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线与椭圆相交于两点,为坐标原点.
(Ⅰ)当点的坐标为,且四边形为菱形时,求的长;
(Ⅱ)当点上且不是的顶点时,证明:四边形不可能为菱形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,直线L的方程为x-y+4=0,曲线C的参数方程
(1)求曲线C的普通方程;
(2)设点Q是曲线C上的一个动点,求它到直线L的距离的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线为常数),为其焦点.

(1)写出焦点的坐标;
(2)过点的直线与抛物线相交于两点,且,求直线的斜率;
(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过双曲线的左焦点F作⊙O: 的两条切线,记切点为A,B,双曲线左顶点为C,若,则双曲线的离心率为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,点与点关于原点对称.点在抛物线上,且直线的斜率之积等于-,则_____________

查看答案和解析>>

同步练习册答案