精英家教网 > 高中数学 > 题目详情
过双曲线的左焦点F作⊙O: 的两条切线,记切点为A,B,双曲线左顶点为C,若,则双曲线的离心率为____________.
2

试题分析:因为∠ACB=120°,OA=OC,所以∠AOC=60°。
∵FA是圆的切线,∴∠AFO=30°,∴OF=2OC,∴c=2a,∴e=2
故答案为2。
点评:中档题,解题的关键是熟练明确双曲线与圆的位置关系,结合有关条件确定a,b,c的关系。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别是,Q是椭圆外的动点,满足.点是线段与该椭圆的交点,点T是的中点.

(Ⅰ)设为点的横坐标,证明
(Ⅱ)求点T的轨迹的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,过的直线分别交于,若是线段的中点,则等于(  )
A.12B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

分别求适合下列条件圆锥曲线的标准方程:
(1)焦点 为且过点椭圆;
(2)与双曲线有相同的渐近线,且过点的双曲线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为4.

(I)求椭圆C的标准方程;
(II)直线x=2与椭圆C交于P、Q两点,A、B是椭圆O上位于直线PQ两侧的动点,且直线AB的斜率为.
①求四边形APBQ面积的最大值;
②设直线PA的斜率为,直线PB的斜率为,判断+的值是否为常数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的右焦点为(3,0),则该双曲线的离心率等于 (   )
A.B.C..D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

知圆柱的底面半径为2,高为3,用一个平面去截,若所截得的截面为椭圆,则椭圆的离心率的取值范围为(  )
A.B.(0,C.D.(0,

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,短轴长为,点在椭圆上,且满足的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.

查看答案和解析>>

同步练习册答案