精英家教网 > 高中数学 > 题目详情
已知双曲线的右焦点为(3,0),则该双曲线的离心率等于 (   )
A.B.C..D.
C  

试题分析:因为,双曲线的右焦点为(3,0),所以,由
得,=,选C。
点评:简单题,双曲线中,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知,直线, 动点的距离是它到定直线距离的倍. 设动点的轨迹曲线为
(1)求曲线的轨迹方程.
(2)设点, 若直线为曲线的任意一条切线,且点的距离分别为,试判断是否为常数,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线为常数),为其焦点.

(1)写出焦点的坐标;
(2)过点的直线与抛物线相交于两点,且,求直线的斜率;
(3)若线段是过抛物线焦点的两条动弦,且满足,如图所示.求四边形面积的最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过双曲线的左焦点F作⊙O: 的两条切线,记切点为A,B,双曲线左顶点为C,若,则双曲线的离心率为____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,南北方向的公路 ,A地在公路正东2 km处,B地在A东偏北300方向2 km处,河流沿岸曲线上任意一点到公路和到地距离相等.现要在曲线上一处建一座码头,向两地运货物,经测算,从、到修建费用都为a万元/km,那么,修建这条公路的总费用最低是(  )万元
A.(2+)aB.2(+1)aC.5aD.6ª

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

顶点在原点,焦点是的抛物线方程( ) .
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知直线l与抛物线相切于点P(2,1),且与x轴交于点A,定点B(2,0).

(1)若动点M满足,求点M轨迹C的方程:
(2)若过点B的直线(斜率不为零)与(1)中的轨迹C交于不同的两点E,F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,点与点关于原点对称.点在抛物线上,且直线的斜率之积等于-,则_____________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲线的离心率为(    )
A.B.C.D.2

查看答案和解析>>

同步练习册答案