精英家教网 > 高中数学 > 题目详情
已知数列{an}的各项均是正数,其前n项和为Sn,满足Sn=4-an
(1)求数列{an}的通项公式;
(2)设bn=
1
2-log2an
(n∈N*),数列{bnbn+2}的前n项和为Tn,求证:Tn
3
4
(1)由Sn=4-an.得S1=4-a1,解得a1=2,
而an+1=Sn+1-Sn=(4-an+1)-(4-an)=an-an+1,即2an+1=an
an+1
an
=
1
2

可见,数列{an}是首项为2,公比为
1
2
的等比数列.
∴an=2•(
1
2
)n-1
=(
1
2
)n-2

(2)证明:∵bn=
1
2-log2an
=
1
2-(2-n)
=
1
n

∴bnbn+2=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴数列{bnbn+2}的前n项和
Tn=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+(
1
3
-
1
5
)+(
1
4
-
1
6
)+…+(
1
n-2
-
1
n
)+(
1
n-1
-
1
n+1
)+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2

=
1
2
3
2
-
1
n+1
-
1
n+2
)=
3
4
-
1
2
1
n+1
+
1
n+2
3
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若a>0,且a≠1, 则的值是                           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若数列{an}通项公式为an=
1
n(n+1)
,则数列{an}的前5项和为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列
1
1+2
1
1+2+3
,…
1
1+2+…+n
的前n项和为(  )
A.
n
n+1
B.
2n
n+1
C.
n
n+2
D.
n
2(n+1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列{an}单调递增,a1+a4=9,a2a3=8,bn=log22an
(Ⅰ)求an
(Ⅱ)若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
>0.99,求n的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在数列{an}中,a1=-6×210,点(n,2a+1-an)在直线y=211x上,设bn=an+1-an+t,数列{bn}是等比数列.
(1)求出实数t;(2)令cn=|log2bn|,问从第几项开始,数列{cn}中连续20项之和为100?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等比数列an=
1
3n-1
,其前n项和为Sn=
n
k-1
ak,则Sk+1与Sk的递推关系不满足(  )
A.Sk+1=Sk+
1
3k+1
B.Sk+1=1+
1
3
Sk
C.Sk+1=Sk+ak+1D.Sk+1=3Sk-3+ak+ak+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和为Sn,a1=2,Sn=
1
2
an+1-1
(n∈N*).
(Ⅰ)求a2,a3
(Ⅱ)求数列{an}的通项an
(Ⅲ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列{an}满足an+an+1=
1
2
,a2=1,Sn为前n项和,则S21的值为(  )
A.4B.4.5C.5D.5.5

查看答案和解析>>

同步练习册答案