精英家教网 > 高中数学 > 题目详情
16.化简:
(1)$\frac{2co{s}^{2}θ-1}{1-2si{n}^{2}θ}$;
(2)sinαcosα(tanα+cotα).

分析 (1)利用降幂公式化简即可求值.
(2)利用同角的三角函数关系式化简即可求值.

解答 解:(1)$\frac{2co{s}^{2}θ-1}{1-2si{n}^{2}θ}$=$\frac{cos2θ}{cos2θ}$=1;
(2)sinαcosα(tanα+cotα)=sinαcosα($\frac{sinα}{cosα}$+$\frac{cosα}{sinα}$)=sin2α+cos2α=1.

点评 本题主要考查了同角的三角函数关系式的应用,考查了降幂公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.“点P到两条坐标轴距离相等”是“点P的轨迹方程为y=|x|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.铁路线旁边有一沿铁路方向的公路,在公路上行驶的一辆拖拉机司机只看见迎面驶来的一列货车从车头到车尾经过他身旁共用了15秒,已知货车车速为60千米/时,全长345米.求拖拉机的速度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如果θ是第二象限的角,求证sin(cosθ)•cos(sinθ)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$.
(1)求f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)证明:当x>0时,f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知y=$\frac{x-2}{x+a}$(a>0)的图象在(-1,+∞)上递增,则实数a的取值范围是(  )
A.(1,2)B.[2,+∞)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果α是第三象限角,则-$\frac{α}{2}$是(  )
A.第一象限角B.第一或第二象限角
C.第一或第三象限角D.第二或第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ln(1-2x)的单调减区间是(-$∞,\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\frac{7}{8}-\frac{7}{4}{sin^2}{15°}$的值等于(  )
A.$\frac{7}{8}$B.$\frac{7}{16}$C.$\frac{{7\sqrt{3}}}{8}$D.$\frac{{7\sqrt{3}}}{16}$

查看答案和解析>>

同步练习册答案