精英家教网 > 高中数学 > 题目详情
一次研究性课堂上,老师给出函数,甲、乙、丙三位同学在研究此函数时分别给出命题:
甲:函数f(x)的值域为(-1,1);
乙:若x1≠x2则一定有f(x1)≠f(x2);
丙:若规定f1(x)=f(x),fn(x)=f(f1(x)),则fn(x)=,对任意的n∈N*恒成立
你认为上述三个命题中正确的个数有( )
A.3个
B.2个
C.1个
D.0个
【答案】分析:利用奇函数的定义判断出f(x)为奇函数,通过对x的分段讨论去掉绝对值转化为分段函数,讨论x≥0的值域、单调性判断出甲、乙说的对利用已知的递推关系求出fn(x),判断出丙的说法不对.
解答:解:∵f(-x)-f(x)
∴f(x)为奇函数


∵f(x)为奇函数,
∴当x<0是,f(x)∈(-1,0)
总之,f(x)∈(-1,1)
故甲对
为增函数,
∵f(x)为奇函数
∴当x<0是,f(x)∈(-1,0)为增函数
所以f(x在(-1,1)上为增函数
故乙对
fn(x)=f(f1(x))=f(f(x)==不恒成立
故丙不对
故选B
点评:通过对自变量分段讨论将含绝对值的函数转化为分段函数,解决分段函数的性质问题一般分段讨论研究.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,甲、乙、丙三位同学在研究此函数时分别给出命题:
甲:函数f(x)的值域为(-1,1);
乙:若x1≠x2则一定有f(x1)≠f(x2);
丙:若规定f1(x)=f(x),fn(x)=f(f1(x)),则fn(x)=
x
1+nx
,对任意的n∈N*恒成立
你认为上述三个命题中正确的个数有(  )
A、3个B、2个C、1个D、0个

查看答案和解析>>

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出了函数f(x)=
x
1+|x|
(x∈R)
,三位同学甲、乙、丙在研究此函数时分别给出命题:
①函数f(x)的值域为(-1,1);
②若x1≠x2,则一定有f(x1)≠f(x2
③若规定f1(x)=f(x),fn(x)=f(fn-1(x)),则fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个命题中正确的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,三位同学甲、乙、丙在研究此函数时分别依次对应给出下列命题
①函数f(x)的值域为(-1,1);
②若x1≠x2,则一定有f (x1)≠f (x2);
③若规定f1(x)=f(x),fn(x)=f(fn-1(x)), 则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个命题中正确的题号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,三位同学在研究此函数时给出以下命题:
①函数f(x)的值域为[-1,1];     
②若x1≠x2,则一定有f(x1)≠f(x2);
③对任意的x1,x2∈R,存在x0,使得f(x1)+f(x2)=2f(x0)成立;
④若规定f1(x)=f(x),fn(x)=f(fn-1(x)), 则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述命题中正确的是
②③
②③
.(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

一次研究性课堂上,老师给出函数f(x)=
x
1+|x|
(x∈R)
,三位同学甲、乙、丙在研究此函数时分别给出命题:
①函数f(x)的值域为(-
1
2
1
2
)

②若x1≠x2,则一定有f(x1)≠f(x2);
③若规定f1(x)=f(x),fn(x)=f(fn-1(x)), 则 fn(x)=
x
1+n|x|
对任意n∈N*恒成立.
你认为上述三个命题中正确的是
 

查看答案和解析>>

同步练习册答案