精英家教网 > 高中数学 > 题目详情

集合A={x|x2ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当a取什么实数时,AB AC=同时成立.


解析:

log2(x2-5x+8)=1,由此得x2-5x+8=2,∴B={2,3}x2+2x-8=0,∴C={2,-4},又AC=,∴2和-4都不是关于x的方程x2ax+a2-19=0的解,而AB ,即AB,

∴3是关于x的方程x2ax+a2-19=0的解,∴可得a=5或a=-2.

a=5时,得A={2,3},∴AC={2},这与AC=不符合,所以a=5(舍去);当a=-2时,可以求得A={3,-5},符合AC=AB ,∴a=-2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、若集合A={x|x2-x+1≥0},B={x|x2-5x+4≤0},则A∩B=
{x|1≤x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-mx+m-1=0},若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2=4},B={x|ax=1},若B⊆A,则实数a的取值集合为
{0,-2,2}
{0,-2,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|x2+ax+1=0,x∈R},B={1,2},且A=B,求a的取值范围.

查看答案和解析>>

同步练习册答案