精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是数列{an}的前n项和,则S2013=
 
分析:由题设条件,利用递推思想分别求出数列{an}的前四项,观察这前四项的结果得到数列{an}的奇数项为-
1
2
,偶数项为1,由此能求出S2013
解答:解:∵an+an+1=
1
2
,(n∈N+)
a1=-
1
2

a2=
1
2
-(-
1
2
)
=1,
a3=
1
2
-1=-
1
2

a4=
1
2
-(-
1
2
)=1


∴数列{an}的奇数项为-
1
2
,偶数项为1,
∴S2013=(-
1
2
)×1007+1×1006=504.
故答案为:502.5.
点评:本题考查数列求和的应用,是基础题.解题时要认真审题,注意递推思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案