精英家教网 > 高中数学 > 题目详情
-
3
≤θ≤
3
,则sinθ的取值范围是
 
分析:先根据θ的范围可确定-
π
2
π
2
均在此范围内,再结合正弦函数的最值和单调性可直接得到答案.
解答:解:∵-
3
≤θ≤
3

当θ=-
π
2
时,sinθ=-1,当θ=
π
2
时,sinθ=1
∴-1≤sinθ≤1
故答案为:[-1,1]
点评:本题主要考查正弦函数的最值.考查对基础知识的理解程度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•黄埔区一模)对于函数y=f(x)与常数a,b,若f(2x)=af(x)+b恒成立,则称(a,b)为函数f(x)的一个“P数对”;若f(2x)≥af(x)+b恒成立,则称(a,b)为函数f(x)的一个“类P数对”.设函数f(x)的定义域为R+,且f(1)=3.
(1)若(1,1)是f(x)的一个“P数对”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一个“P数对”,且当x∈[1,2)时f(x)=k-|2x-3|,求f(x)在区间[1,2n)(n∈N*)上的最大值与最小值;
(3)若f(x)是增函数,且(2,-2)是f(x)的一个“类P数对”,试比较下列各组中两个式子的大小,并说明理由.
①f(2-n)与2-n+2(n∈N*);
②f(x)与2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄二模)已知抛物线x2=2py上点(2,2)处的切线经过椭圆E:
y2
a2
+
x2
b2
=1(a>b>0)
的两个顶点.
(1)求椭圆E的方程;
(2)过椭圆E的上顶点A的两条斜率之积为-4的直线与该椭圆交于B,C两点,是否存在一点D,使得直线BC恒过该点?若存在,请求出定点D的坐标;若不存在,请说明理由;
(3)在(2)的条件下,若△ABC的重心为G,当边BC的端点在椭圆E上运动时,求|GA|2+|GB|2+|GC|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上海模拟)以下有四个命题:
①一个等差数列{an}中,若存在ak+1>ak>O(k∈N),则对于任意自然数n>k,都有an>0;
②一个等比数列{an}中,若存在ak<0,ak+1<O(k∈N),则对于任意n∈N,都有an<0;
③一个等差数列{an}中,若存在ak<0,ak+1<0(k∈N),则对于任意n∈N,都有an<O;
④一个等比数列{an}中,若存在自然数k,使ak•ak+1<0,则对于任意n∈N,都有an.an+1<0;
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:2014届广东省东莞市高二下学期期末考试理科数学试卷(A)(解析版) 题型:解答题

根据以往资料统计,大学生购买某品牌平板电脑时计划采用分期付款的期数ζ的分布列为

ζ

1

2

3

P

0.4

0.25

0.35

(1)若事件A={购买该平板电脑的3位大学生中,至少有1位采用1期付款},求事件A的概率P(A);

(2)若签订协议后,在实际付款中,采用1期付款的没有变化,采用2、3期付款的都至多有一次改付款期数的机会,其中采用2期付款的只能改为3期,概率为;采用3期付款的只能改为2期,概率为.数码城销售一台该平板电脑,实际付款期数与利润(元)的关系为

1

2

3

η

200

250

300

(3)求的分布列及期望E().

 

查看答案和解析>>

同步练习册答案