精英家教网 > 高中数学 > 题目详情
16.在区间(10,20]内的所有实数中随机取一个实数a,则这个实数a>17的概率是(  )
A.$\frac{7}{10}$B.$\frac{3}{10}$C.$\frac{1}{3}$D.$\frac{1}{7}$

分析 由已知中在区间(10,20]上随机取一实数,求该实数在区间(17,20]上的概率,我们分别计算出区间(10,20]的长度,区间(17,20]的长度,代入几何概型概率计算公式,即可得到答案

解答 解:由于试验的全部结果构成的区域长度为20-10=10,
构成该事件的区域长度为20-17=3,
所以概率为$\frac{3}{10}$.
故选B.

点评 本题主要考查几何概型的概率计算.其中根据已知条件计算出基本事件总数对应的几何量的大小,和满足条件的几何量的大小是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在长方体ABCD-A1B1C1D1中,AB=3,AD=2,AA1=4,则A1B与平面A1DCB1所成角的正弦值是$\frac{4\sqrt{5}}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:函数$f(x)=x+\frac{m}{x}$,且f(1)=0
(1)求m的值和函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(0,+∞)上的单调性,并用定义加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点M(-2,a)和点N(a,4)的直线的倾斜角为45°,则a的值为(  )
A.1或4B.4C.1或3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1,在边长为1的等边三角形ABC中,M,N分别是AB,AC边上的点,AM=AN,D是BC的中点,AD与MN交于点E,将△ABD沿AD折起,得到如图2所示的三棱锥A-BCD,其中BC=$\frac{{\sqrt{2}}}{2}$. 

(1)证明:CD⊥平面ABD
(2)当AM=$\frac{2}{3}$时,求三棱锥D-MEN的体积VD-MEN

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$=(1,sinα),$\overrightarrow{b}$=(cos2α,2sinα-1),α∈($\frac{π}{2}$,π).若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{5}$,则tan(α+$\frac{π}{4}$)的值为(  )
A.$\frac{2}{3}$B.-$\frac{1}{3}$C.$\frac{2}{7}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知平面直角坐标系中,$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$的方向上的投影是$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2+(a+8)x+a2+a-12,且f(a2-4)=f(2a-8),设等差数列{an}的前n项和为Sn,(n∈N*)若Sn=f(n),则$\frac{{S}_{n}-4a}{{a}_{n}-1}$的最小值为(  )
A.$\frac{27}{6}$B.$\frac{35}{8}$C.$\frac{14}{3}$D.$\frac{37}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求经过棱长为1的正方体ABCD-A1B1C1D1的棱AA1和CC1的中点E、F及点D1的截面,并求截面与正方体的下底面以及正方体侧面所围成的几何体的体积.

查看答案和解析>>

同步练习册答案