精英家教网 > 高中数学 > 题目详情
7.已知:函数$f(x)=x+\frac{m}{x}$,且f(1)=0
(1)求m的值和函数f(x)的定义域;
(2)判断函数f(x)的奇偶性并说明理由;
(3)判断函数f(x)在(0,+∞)上的单调性,并用定义加以证明.

分析 (1)根据方程关系即可求m的值和函数f(x)的定义域;
(2)根据函数奇偶性的定义即可判断函数f(x)的奇偶性并说明理由;
(3)根据函数单调性的定义判断函数f(x)在(0,+∞)上的单调性.

解答 解:(1)∵f(1)=0
∴f(1)=1+m=0,
则m=-1,此时f(x)=x-$\frac{1}{x}$,
要使函数有意义,则x≠0,
即函数f(x)的定义域为(-∞,0)∪(0,+∞);
(2)∵函数f(x)的定义域为(-∞,0)∪(0,+∞);
∴定义域关于原点对称,
则f(-x)=-x+$\frac{1}{x}$=-(x-$\frac{1}{x}$)=-f(x),
则函数f(x)为奇函数;
(3)函数f(x)在(0,+∞)上的单调递增,
设0<x1<x2
则f(x1)-f(x2)=x1-$\frac{1}{{x}_{1}}$-(x2-$\frac{1}{{x}_{2}}$)=(x1-x2)+$\frac{1}{{x}_{2}}$-$\frac{1}{{x}_{1}}$=(x1-x2)+$\frac{{x}_{1}-{x}_{2}}{{x}_{1}{x}_{2}}$=(x1-x2)(1+$\frac{1}{{x}_{1}{x}_{2}}$),
∵0<x1<x2
∴x1-x2<0,x1x2>0,
则f(x1)-f(x2)<0,即f(x1)<f(x2),
即函数f(x)在(0,+∞)上的单调递增.

点评 本题主要考查函数解析式的求解,以及函数奇偶性和单调性的判断和证明,利用定义法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,O为AD的中点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$,M是棱PC上一点,PA∥平面MOB;
(1)证明:CD⊥平面PAD;
(2)求证:M是棱PC的中点;
(3)求三棱锥M-POB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.计算:
(1)${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-3{π^0}+\frac{37}{48}$
(2)$lg25+\frac{2}{3}lg8+lg5•lg20+{({lg20})^2}-2lg20$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线y=kx与双曲线4x2-y2=16有两个不同公共点,则k的取值范围为(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“若x=300°,则cosx=$\frac{1}{2}$”的逆否命题是(  )
A.若cosx=$\frac{1}{2}$,则x=300°B.若x=300°,则cosx≠$\frac{1}{2}$
C.若cosx≠$\frac{1}{2}$,则x≠300°D.若x≠300°,则cosx≠$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.64个正数排成8行8列,如图所示:在符号aij(1≤i≤8,1≤j≤8)中,i表示该数所在行数,j表示该数所在列数,已知每一行都成等差数列,而每一列都成等比数列(且每列公比都相等)若a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$,则aij=$\frac{j}{{2}^{i}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.与y=x是相同函数的是(  )
A.y=$\sqrt{{x}^{2}}$B.y=x0C.y=$\frac{{x}^{2}}{x}$D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间(10,20]内的所有实数中随机取一个实数a,则这个实数a>17的概率是(  )
A.$\frac{7}{10}$B.$\frac{3}{10}$C.$\frac{1}{3}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y=2x2的焦点坐标是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,0)C.(0,$\frac{1}{8}$)D.($\frac{1}{8}$,0)

查看答案和解析>>

同步练习册答案