分析 设第一行公差为d,第一列的公比为q,根据已知求出d,q利用等差数列与等比数列的通项公式即可得出;
解答 解:设第一行公差为d,第一列的公比为q,
∵a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$,
∴$\left\{\begin{array}{l}(\frac{1}{2}+d){q}^{2}=\frac{1}{4}\\(\frac{1}{2}+3d)q=1\end{array}\right.$,
解出d=q=$\frac{1}{2}$,
则aij=$(\frac{1}{2}j){•(\frac{1}{2})}^{i-1}$=$\frac{j}{{2}^{i}}$,
故答案为:$\frac{j}{{2}^{i}}$
点评 归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{7}$ | D. | -$\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com