分析 将Sn看作是未知数,通过解一元二次方程Sn2-(n2+n-1)•Sn-(n2+n)=0,利用求根公式可知Sn=n2+n或Sn=-1,分两种情况讨论即得结论.
解答 解:∵Sn2-(n2+n-1)•Sn-(n2+n)=0,
∴Sn=$\frac{({n}^{2}+n-1)±\sqrt{({n}^{2}+n-1)^{2}+4({n}^{2}+n)}}{2}$
=$\frac{({n}^{2}+n-1)±\sqrt{{n}^{4}+2{n}^{3}+3{n}^{2}+2n+1}}{2}$
=$\frac{({n}^{2}+n-1)±\sqrt{({n}^{2}+n+1)^{2}}}{2}$
=$\frac{({n}^{2}+n-1)±({n}^{2}+n+1)}{2}$,
∴Sn=n2+n或Sn=-1,
下面分情况讨论:
①当Sn=-1时,易知an=$\left\{\begin{array}{l}{-1,}&{n=1}\\{0,}&{n≥2}\end{array}\right.$;
②当Sn=n2+n时,
an=Sn-Sn-1
=n2+n-[(n-1)2+(n-1)]
=2n(n≥2),
又∵a1=S1=2,
∴an=2n;
综上所述,an=2n或an=$\left\{\begin{array}{l}{-1,}&{n=1}\\{0,}&{n≥2}\end{array}\right.$.
点评 本题考查数列的通项,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 11 | D. | -11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | -2 | D. | ±2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com