精英家教网 > 高中数学 > 题目详情

【题目】中国人均读书4.3本(包括网络文学和教科书),比韩国的11本、法国的20本、日本的40本、犹太人的64本少得多,是世界上人均读书最少的国家.这个论断被各种媒体反复引用.出现这样的统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成6段:后得到如图所示的频率分布直方图.问:

1)估计在40名读书者中年龄分布在的人数;

2)求40名读书者年龄的平均数和中位数;

3)若从年龄在的读书者中任取2名,求这两名读书者年龄在的人数的分布列及数学期望.

【答案】见解析

【解析】(1频率分布直方图知年龄在频率为,所以40名读书者中年龄分布在的人数为……………………2

240名读书者年龄的平均数为…………4分

设中位数为,则,解得,即40名读书者年龄的中位数为55…………6

3)年龄在读书者人,年龄在读书者人,所以的所有可能取值是012 的分布列如下:

0

1

2

…………10分

数学期望……………………12

【命题意图】本题主要考查频率分布直方图的识别与计算、样本的数字特征、超几何分布,随机变量的期望,以及考查识图能力、审读能力、获取信息的能力、分类讨论思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线 ,曲线 为参数),以坐标原点为极点, 轴正半轴为极轴,建立极坐标系.

(Ⅰ)求曲线 的极坐标方程;

(Ⅱ)曲线 为参数, )分别交 两点,当取何值时, 取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,且满足an=2Sn﹣1(n∈N*) (Ⅰ)求证:数列{an}为等比数列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:

年份

2007

2008

2009

2010

2011

2012

2013

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

1)求y关于t的线性回归方程;

2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图茎叶图表示的是甲,乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1,讨论函数的单调性;

2曲线与直线交于两点,其中,若直线斜率为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】节能减排以来,兰州市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)估计用电量落在[220,300)中的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌手机厂商推出新款的旗舰机型,并在某地区跟踪调查得到这款手机上市时间(第x周)和市场占有率(y﹪)的几组相关数据如下表:

1

2

3

4

5

0.03

0.06

0.1

0.14

0.17

(Ⅰ)根据表中的数据,用最小二乘法求出关于的线性回归方程

(Ⅱ)根据上述线性回归方程,分析该款旗舰机型市场占有率的变化趋势,并预测在第几周,该款旗舰机型市场占有率将首次超过 0.40﹪(最后结果精确到整数).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x,y∈R且满足不等式组 ,当k=1时,不等式组所表示的平面区域的面积为 , 若目标函数z=3x+y的最大值为7,则k的值为

查看答案和解析>>

同步练习册答案