精英家教网 > 高中数学 > 题目详情
求证:
1+sinα+cosα+2sinαcosα
1+sinα+cosα
=sinα+cosα
证明:∵1+2sinα•cosα=(sinα+cosα)2
∵1+sinα+cosα≠0,
∴左端
1+sinα+cosα+2sinαcosα
1+sinα+cosα

=
sinα+cosα+(sinα+cosα)2
1+sinα+cosα

=
(sinα+cosα)(1+sinα+cosα)
1+sinα+cosα

=sinα+cosα=右端.
1+sinα+cosα+2sinαcosα
1+sinα+cosα
=sinα+cosα
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求证:
1+sinα
1-2sin2
α
2
=
1+tan
α
2
1-tan
α
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1+sinα+cosα+2sinαcosα1+sinα+cosα
=sinα+cosα

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:
1+sinα+cosα+2sinαcosα
1+sinα+cosα
=sinα+cosα

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:
1+sinα
1-2sin2
α
2
=
1+tan
α
2
1-tan
α
2

查看答案和解析>>

同步练习册答案