精英家教网 > 高中数学 > 题目详情
19.设函数f(x)=x3-3(a+1)x+b.(a≠0)
(Ⅰ)若曲线y=f(x)在点(2,f(2))处与直线y=8相切,求a,b的值;
(Ⅱ)求函数g(x)=f(x)+3x的单调区间与极值.

分析 (Ⅰ)先求出函数的导数,通过解方程组求出a,b的值;
(Ⅱ)讨论a>0,a<0,分别令g′(x)>0,g′(x)<0,解不等式,求出单调区间,从而求出函数的极值.

解答 解:(Ⅰ)f′(x)=3x2-3(a+1),
∵曲线y=f(x)在点(2,f(2))处与直线y=8相切,
∴f′(2)=0且f(2)=8,即12-3(a+1)=0,且8-6(a+1)+b=8,
解得a=3,b=24;
(Ⅱ)∵g(x)=f(x)+3x=x3-3ax+b,
g′(x)=3(x2-a)(a≠0),
当a<0时,g′(x)>0,函数g(x)在(-∞,+∞)上单调递增,
此时函数g(x)没有极值点;
当a>0时,由g′(x)=0,解得x=±$\sqrt{a}$,
当x>$\sqrt{a}$或x<-$\sqrt{a}$时,g′(x)>0,函数g(x)单调递增,
当-$\sqrt{a}$<x<$\sqrt{a}$时,g′(x)<0,函数g(x)单调递减,
∴此时x=-$\sqrt{a}$是g(x)的极大值点,且极大值为b+2a$\sqrt{a}$;
x=$\sqrt{a}$是g(x)的极小值点,且极小值为b-2a$\sqrt{a}$.

点评 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,过F1作圆${x^2}+{y^2}=\frac{{{{(a-b)}^2}}}{4}$的切线,切点为P,切线与椭圆交于点Q,若$\overrightarrow{O{F_1}}+\overrightarrow{OQ}=2\overrightarrow{OP}$,则椭圆的离心率为$\frac{{\sqrt{6}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知不等式ax2-5x+b>0的解集是{x|-3<x<-2},则不等式bx2-5x+a>0的解是$(-\frac{1}{2},-\frac{1}{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数$f(x)=\frac{x^2}{{\sqrt{2-x}}}+lg(x+3)$的定义域为(  )
A.(-3,2]B.[-3,2]C.(-3,2)D.(-∞,-3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式|x-5|+|x+1|<8的解集为(  )
A.(-∞,2)B.(-2,6)C.(6,+∞)D.(-1,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点$(\sqrt{2},\sqrt{3})$在双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上,且C的焦距为4,则它的离心率为(  )
A.2B.4C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{4}{x-2}>x-2$的解集是(  )
A.(-∞,0)∪(2,4)B.[0,2)∪[4,+∞)C.[2,4)D.(-∞,-2]∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数$f(x)={log_2}(x+\sqrt{{x^2}+1})+\frac{{5{e^x}+3}}{{{e^x}+1}}$,x∈[-k,k](k>0)的最大值和最小值分别为M和m,则M+m=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=m(x-3m)(x+m+3),g(x)=2x-4.若同时满足条件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0,
则m的取值范围是(-5,-$\frac{4}{3}$).

查看答案和解析>>

同步练习册答案