【题目】已知椭圆C1:(a>b>0)的离心率为,x轴被曲线C2:y=x2-b截得的线段长度等于C1的短轴长.已知C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.
(1)求C1,C2的方程;
(2)求证:MA⊥MB;
(3)记△MAB,△MDE的面积分别为S1,S2,若,求λ的取值范围.
【答案】(1),;(2)见解析;(3)
【解析】
(1)根据:的离心率为,轴被曲线截得的线段长度等于的短轴长,结合性质 ,列出关于 、 、的方程组,求出 、 、,即可得结果;(2)设,直线与抛物线联立,利用平面向量的数量积公式结合韦达定理可得,从而可得结果;(3)设
分别与抛物线方程联立求出坐标,分别与椭圆方程联立求出,结合三角形面积公式可将用表示,利用基本不等式可得结果.
(1)由题意知,=,所以a2=2b2.又2=2b,得b=1,
所以曲线C2的方程为y=x2-1,椭圆C1的方程为+y
(2)证明:设直线AB:y=kx,A(x1,y1),B(x2,y2).
由题意知,M(0,-1),由得x2-kx-1=0,
所以·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-(1+k2)+k2+1=0,所以MA⊥MB.
(3)设直线MA:y=k1x-1,直线MB:y=k2x-1,
则k1k2=-1,且M(0,-1).
由解得或所以A(k1,-1).同理可得B(k2,-1),
故S1=|MA|·|MB|=··|k1|·|k2|.由解得或所以D.同理可得,E,
故S2=|MD|·|ME|=··.
故=λ==≥,
当且仅当k1=±1时等号成立,
故λ的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3-3x及y=f(x)上一点P(1,-2),过点P作直线l.
(1)求使直线l和y=f(x)相切且以P为切点的直线方程;
(2)求使直线l和y=f(x)相切且切点异于P的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax(a∈R),g(x)= (f′(x)为f(x)的导函数),若方程g(f(x))=0有四个不等的实根,则a的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆 =1(a>b>0)的离心率为 ,长轴长为4,过椭圆的左顶点A作直线l,分别交椭圆和圆x2+y2=a2于相异两点P,Q.
(1)若直线l的斜率为 ,求 的值;
(2)若 =λ ,求实数λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)上一点P( ,m)到准线的距离与到原点O的距离相等,抛物线的焦点为F.
(1)求抛物线的方程;
(2)若A为抛物线上一点(异于原点O),点A处的切线交x轴于点B,过A作准线的垂线,垂足为点E.试判断四边形AEBF的形状,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了分析某个高三学生的学习状态,对其下一个阶段的学习提出指导性建议,某老师现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该学生7次考试的成绩.
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的证明.
(2)已知该学生的物理成绩y与数学成绩x是线性相关的,若该学生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该学生在学习数学、物理上的合理建议.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,D为AB的中点.
(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com