精英家教网 > 高中数学 > 题目详情
13.高三某6个班级从“照母山”等6个不同的景点中任意选取一个进行郊游活动,其中1班、2班不去同一景点且均不去“照母山”的不同的安排方式有多少种(  )
A.C${\;}_{5}^{2}$A${\;}_{4}^{4}$B.C${\;}_{5}^{2}$64C.A${\;}_{5}^{2}$A${\;}_{4}^{4}$D.A${\;}_{5}^{2}$64

分析 分两步,第一步,安排1班、2班,从5个景点选2个,第二步,安排另外4个班级,每个班级都有6种选法,根据分步计数原理可得答案.

解答 解:分两步,第一步,安排1班、2班,从5个景点选2个,由A52种,
第二步,安排另外4个班级,每个班级都有6种选法,故有64种,
根据分步计数原理,共有A5264种,
故选:D.

点评 本题主要考查分步计数原理,关键是分步,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知直线y=1-x交椭圆mx2+ny2=1于M、N两点,弦MN的中点为P,O为坐标原点,若直线OP的斜率为$\frac{\sqrt{2}}{2}$,则$\frac{m}{n}$的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点M(-2,a)和点N(a,4)的直线的倾斜角为45°,则a的值为(  )
A.1或4B.4C.1或3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知$\overrightarrow{a}$=(1,sinα),$\overrightarrow{b}$=(cos2α,2sinα-1),α∈($\frac{π}{2}$,π).若$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{5}$,则tan(α+$\frac{π}{4}$)的值为(  )
A.$\frac{2}{3}$B.-$\frac{1}{3}$C.$\frac{2}{7}$D.-$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知平面直角坐标系中,$\overrightarrow{b}$=(3,4),$\overrightarrow{a}$•$\overrightarrow{b}$=-3,则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$的方向上的投影是$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在复平面内,复数z1和z2对应的点分别是A和B,则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.-$\frac{2}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x2+(a+8)x+a2+a-12,且f(a2-4)=f(2a-8),设等差数列{an}的前n项和为Sn,(n∈N*)若Sn=f(n),则$\frac{{S}_{n}-4a}{{a}_{n}-1}$的最小值为(  )
A.$\frac{27}{6}$B.$\frac{35}{8}$C.$\frac{14}{3}$D.$\frac{37}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知关于x的x2-2ax+a+2=0的两个实数根是α,β,且有1<α<2<β<3,则实数a的取值范围是$({2,\frac{11}{5}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=$\sqrt{3}$sin2x-cos2x.
(1)求函数f(x)的单调递增区间;
(2)若f(θ)=$\frac{6}{5}$,θ∈[0,$\frac{π}{4}$],求cos2θ的值.

查看答案和解析>>

同步练习册答案