精英家教网 > 高中数学 > 题目详情
18.如图,在复平面内,复数z1和z2对应的点分别是A和B,则$\frac{{z}_{2}}{{z}_{1}}$=(  )
A.$\frac{1}{5}$+$\frac{2}{5}$iB.$\frac{2}{5}$+$\frac{1}{5}$iC.-$\frac{1}{5}$-$\frac{2}{5}$iD.-$\frac{2}{5}$-$\frac{1}{5}$i

分析 由图形可得:z1=-2-i,z2=i.再利用复数的运算法则即可得出.

解答 解:由图形可得:z1=-2-i,z2=i.
∴$\frac{{z}_{2}}{{z}_{1}}$=$\frac{i}{-2-i}$=$\frac{-i(2-i)}{(2+i)(2-i)}$=$\frac{-2i-1}{5}$=-$\frac{1}{5}$-$\frac{2}{5}$i,
故选:C.

点评 本题考查了复数的运算法则、复数的几何意义,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系中,O为坐标原点,A(1,2),B(7,5),C在线段AB上,且满足2|AC|=|BC|,则|OC|的长等于3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图1,在边长为1的等边三角形ABC中,M,N分别是AB,AC边上的点,AM=AN,D是BC的中点,AD与MN交于点E,将△ABD沿AD折起,得到如图2所示的三棱锥A-BCD,其中$BC=\frac{{\sqrt{2}}}{2}$.

(1)证明:CD⊥平面ABD;
(2)当$AM=\frac{2}{3}$时,求三棱锥E-MDN的体积VE-MDN

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-2,x≤1}\\{lo{g}_{2}(x-1),x>1}\end{array}\right.$,则f[f($\frac{5}{2}$)]=(  )
A.-$\frac{1}{2}$B.-1C.-5D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.高三某6个班级从“照母山”等6个不同的景点中任意选取一个进行郊游活动,其中1班、2班不去同一景点且均不去“照母山”的不同的安排方式有多少种(  )
A.C${\;}_{5}^{2}$A${\;}_{4}^{4}$B.C${\;}_{5}^{2}$64C.A${\;}_{5}^{2}$A${\;}_{4}^{4}$D.A${\;}_{5}^{2}$64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.等比数列{an}中,an>0,公比q=$\sqrt{2}$,a4•a8=8,则a2•a6•a7=(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知定义在[-2,2]上的函数y=f(x)和y=g(x),其图象如图所示:

则以下结论正确的个数是结论(  )
①方程f[g(x)]=0有且仅有6个根;   ②方程g[f(x)]=0有且仅有3个根;
③方程f[f(x)]=0有且仅有5个根;   ④方程g[g(x)]=0有且仅有4个根.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数$f(x)=\frac{1}{a}{x^2}-2ax+5$在区间(-∞,1)上单调递增,在区间(1,+∞)上单调递减,则a=(  )
A.1B.-1C.±1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式:x2-x+a-a2<0.

查看答案和解析>>

同步练习册答案