精英家教网 > 高中数学 > 题目详情
10.已知0<c<1,a>b>1,下列不等式成立的是(  )
A.ca>cbB.ac<bcC.$\frac{a}{a-c}>\frac{b}{b-c}$D.logac>logbc

分析 根据题意,依次分析选项:对于A、构造函数y=cx,由指数函数的性质分析可得A错误,对于B、构造函数y=xc,由幂函数的性质分析可得B错误,对于C、由作差法比较可得C错误,对于D、由作差法利用对数函数的运算性质分析可得D正确,即可得答案.

解答 解:根据题意,依次分析选项:
对于A、构造函数y=cx,由于0<c<1,则函数y=cx是减函数,又由a>b>1,则有ca>cb,故A错误;
对于B、构造函数y=xc,由于0<c<1,则函数y=xc是增函数,又由a>b>1,则有ac>bc,故B错误;
对于C、$\frac{a}{a-c}$-$\frac{b}{b-c}$=$\frac{ab-ac-ab+bc}{(a-c)(b-c)}$=$\frac{c(b-a)}{(a-c)(b-c)}$,又由0<c<1,a>b>1,则(a-c)>0、(b-c)>0、(b-a)<0,进而有$\frac{a}{a-c}$-$\frac{b}{b-c}$<0,故有$\frac{a}{a-c}$<$\frac{b}{b-c}$,故C错误;
对于D、logac-logbc=$\frac{lgc}{lga}$-$\frac{lgc}{lgb}$=lgc($\frac{lgb-lga}{lga•lgb}$),又由0<c<1,a>b>1,则有lgc<0,lga>lgb>0,则有logac-logbc=$\frac{lgc}{lga}$-$\frac{lgc}{lgb}$=lgc($\frac{lgb-lga}{lga•lgb}$)>0,即有logac>logbc,故D正确;
故选:D.

点评 本题考查不等式比较大小,关键是掌握不等式的性质并灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知曲线f(x)=ax-1+1(a>1)恒过定点A,点A恰在双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线C的离心率为(  )
A.$\sqrt{5}$B.5C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(Ⅰ)求图中a的值;
(Ⅱ)估计该次考试的平均分$\overline{x}$(同一组中的数据用该组的区间中点值代表);
(Ⅲ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
 晋级成功晋级失败合计
16  
  50
合计   
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设点M到坐标原点的距离和它到直线l:x=-m(m>0)的距离之比是一个常数$\frac{\sqrt{2}}{2}$.
(Ⅰ)求点M的轨迹;
(Ⅱ)若m=1时得到的曲线是C,将曲线C向左平移一个单位长度后得到曲线E,过点P(-2,0)的直线l1与曲线E交于不同的两点A(x1,y1),B(x2,y2),过F(1,0)的直线AF、BF分别交曲线E于点D、Q,设$\overrightarrow{AF}$=α$\overrightarrow{FD}$,$\overrightarrow{BF}$=β$\overrightarrow{FQ}$,α、β∈R,求α+β的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知F1,F2分别是长轴长为2$\sqrt{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为-$\frac{1}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是(-$\frac{1}{4}$,0),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大小;
(Ⅱ) 若a=$\sqrt{7}$,△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求b+c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.公元263年左右,我国数学家刘徽发现,当圆内接正多边形的边数无限增加时,正多边形的周长可无限逼近圆的周长,并创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率,利用刘徽的割圆术设计的程序框图如图所示,若输出的n=96,则判断框内可以填入(  )(参考数据:sin7.5°≈0.1305,sin3.75°≈0.06540,sin1.875°≈0.03272)
A.p≤3.14B.p≥3.14C.p≥3.1415D.p≥3.1415926

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线C1:x=-5,圆${C_2}:{(x-2)^2}+{(y-1)^2}=1$,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求C1,C2的极坐标方程;
(2)若直线C3的极坐标方程为$θ=\frac{π}{4}(ρ∈R)$,C2与C3的交点为M,N,求△C2MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ax-1-lnx(a∈R).
(1)讨论函数f(x)的单调区间;
(2)对任意a∈[1,4),且存在x∈[1,e3],使得不等式f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

同步练习册答案