分析 (1)证明:△ACB∽△CBP,即可证明BC 2=AC•BP.
(2)由题意可得EC2=EA•EB=EA(EA+AB),即可解得EA的值.
解答
解:(1)证明:∵AB为圆O的直径,∴∠ACB=90°.
又AC∥BP,
∴∠ACB=∠CBP,∠ECA=∠P.
∵EC为圆O的切线,∴∠ECA=∠ABC,∴∠ABC=∠P,
∴△ACB∽△CBP.
∴$\frac{AC}{BC}=\frac{BC}{BP}$,即BC 2=AC•BP.…(4分)
(2)解:∵EC为圆O的切线,EC=2$\sqrt{5}$,AB=8,…(5分)
∴EC2=EA•EB=EA(EA+AB),
∴20=EA(EA+8),
∴EA=2. …(6分)
点评 本题考查三角形相似的判定性质的运用,考查切割线定理的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,1) | B. | (1,3) | C. | (-∞,-1) | D. | (-3,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com