精英家教网 > 高中数学 > 题目详情
精英家教网已知在多面体ABCDE中,DB⊥平面ABC,AE∥BD,且AB=BC=CA=BD=2AE,F为CD的中点.
(1)求证:EF⊥平面BCD;
(2)求二面角D-EC-B的正切值.
分析:(1)连接BF,由EF2+BF2=BE2得到BF⊥EF,又EF⊥CD,则线面垂直的判断定理证明.
(2)由(Ⅰ)可知BF⊥CD,BF⊥EF,所以BF⊥面CDE,又过F作FG⊥CE,交CE于点G,连接BG,得知∠BGF为二面角D-EC-B的平面角,然后在Rt△BGF中求解.
解答:解:(Ⅰ)连接BF,不妨设AE=1,则AB=BC=AC=BD=2,
于是CE=ED=
5
CD=2
2

所以EF=
3
BF=
2
BE=
5
(3分)
所以BF⊥EF,又EF⊥CD,又BF,CD为两条相交直线
故EF⊥平面BCD(6分)

(Ⅱ)由(Ⅰ)可知BF⊥CD,BF⊥EF,所以BF⊥面CDE
又过F作FG⊥CE,交CE于点G,连接BG
因此∠BGF为二面角D-EC-B的平面角(9分)
tan∠BGF=
BF
FG

FG=
EF•CF
CE
=
3
×
2
5
=
30
5

所以tan∠BGF=
2
30
5
=
15
3
(12分)
点评:本题主要考查线线垂直与线面垂直的相互转化,同时考查二面角的求法,基本思路是先找或作出二面角的平面角,再求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在多面体ABCD-A1B1C1D1中,上、下两个底面ABCD和A1B1C1D1互相平行,且都是正方形,DD1⊥底面ABCD,AB=2A1B1=2DD1=2a.
(Ⅰ)求异面直线AB1与DD1所成的角的余弦值;
(Ⅱ)已知F是AD的中点,求证:FB1⊥平面BCC1B1
(Ⅲ)在(Ⅱ)条件下,求二面角F-CC1-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的多面体中,已知直角梯形ABCD和矩形CDEF所在的平面互相垂直,AD⊥DC,AB∥DC,AB=AD=DE=4,CD=8.
(Ⅰ)证明:BD⊥平面BCF;
(Ⅱ)设二面角E-BC-F的平面角为θ,求cosθ的值;
(Ⅲ)M为AD的中点,在DE上是否存在一点P,使得MP∥平面BCE?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(02年北京卷文)(12分)

如图,在多面体ABCD―A1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c,d与a,b且a>c,b>d,两底面间的距离为h..

   (Ⅰ)求侧面ABB1A1与底面ABCD所成二面角正切值;

   (Ⅱ)在估测该多面体的体积时,经常运用近似公式

 V=S中截面?h来计算.已知它的体积公式是

 (S上底面+4S中截面+S下底面),

试判断V与V的大小关系,并加以证明.

   (注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面.)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在多面体ABCDA1B1C1D1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于EF两点,上、下底面矩形的长、宽分别为cdab,且acbd,两底面间的距离为h

(Ⅰ)求侧面ABB1A1与底面ABCD所成二面角的大小;

(Ⅱ)证明:EF∥面ABCD

(Ⅲ)在估测该多面体的体积时,经常运用近似公式V=S中截面·h来计算.已知它的体积公式是V=S上底面+4S中截面+S下底面),试判断VV的大小关系,并加以证明。

(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面)

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海交大附中高三数学理总复习二空间向量与立体几何练习卷(解析版) 题型:解答题

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;

(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

 

查看答案和解析>>

同步练习册答案