精英家教网 > 高中数学 > 题目详情
已知双曲线
x2
4
-
y2
9
=1
,F1,F2是其两个焦点,点M在双曲线上,若∠F1MF2=120°,则△F1MF2的面积为______.
不妨设点M在双曲线的右支上,设|MF1|=m,|MF2|=n.
由双曲线
x2
4
-
y2
9
=1
,得a2=4,b2=9,∴c=
a2+b2
=
13

m-n=2a=4
(2
13
)2=m2+n2-2mncos120°

解得mn=12.
∴△F1MF2的面积=
1
2
mnsin120°
=3
3

故答案为3
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率为
5
2
F1
、F2分别为左、右焦点,M为左准线与渐近线在第二象限内的交点,且
F1M
.
F2M
=-
1
4

(I)求双曲线的方程;
(II)设A(m,0)和B(
1
m
,0)
(0<m<1)是x轴上的两点.过点A作斜率不为0的直线l,使得l交双曲线于C、D两点,作直线BC交双曲线于另一点E.证明直线DE垂直于x轴.中心O为圆心,分别以a和b为半径作大圆和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线的一个焦点与抛物线x2=20y的焦点重合,且其渐近线的方程为3x±4y=0,则该双曲线的标准方程为(  )
A.
x2
9
-
y2
16
=1
B.
x2
16
-
y2
9
=1
C.
y2
9
-
x2
16
=1
D.
y2
16
-
x2
9
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线
y2
9
-
x2
16
=1
上的一点P到它一个焦点的距离为4,则点P到另一焦点的距离是(  )
A.2B.10C.10或2D.14

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)的一条渐近线与抛物线x=y2的一个交点的横坐标为x0,若x0
1
2
,则双曲线C的离心率的取值范围是(  )
A.(1,
6
2
)
B.(1,
3
)
C.(
3
,+∞)
D.(
6
2
,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若一个椭圆与双曲线x2-
y2
3
=1
焦点相同,且过点(-
3
,1).
(Ⅰ)求这个椭圆的标准方程;
(Ⅱ)求这个椭圆的所有斜率为2的平行弦的中点轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点为F,过F且斜率为
3
的直线交C于A、B两点,若
AF
=4
FB
,则双曲线C的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

双曲线C的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知|
OA
|=2|
FA
|
,且
BF
FA
同向.
(1)求双曲线C的离心率;
(2)设AB被双曲线C所截得的线段的长为4,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线
y2
4
-x2
=1,则它的渐近线方程为(  )
A.y=±2xB.y=±
1
2
x
C.y=±4xD.y=±
1
4
x

查看答案和解析>>

同步练习册答案