精英家教网 > 高中数学 > 题目详情
已知f(x)=2cos2x+asin2x+b-1(a>0)的最大值比最小值大4.
(1)求a的值;
(2)当x∈[0,
π2
]
时,|f(x)|≤3恒成立,求实数b的取值范围.
分析:(1)利用降幂公式、辅助角公式将f(x)化为f(x)=
a2+1
sin(2x+φ)+b,由题意可求a的值;
(2)由(1)知f(x)=2sin(2+
π
6
)+b,由x∈[0,
π
2
]可得2x+
π
6
∈[
π
6
6
],从而可得f(x)∈[b-1,b+2],结合可得|f(x)|≤3恒成立,可求实数b的取值范范.
解答:解:(1)f(x)=cos2x+asin2x+b=
a2+1
sin(2x+φ)+b,
∴2
a2+1
=4,又a>0,
∴a=
3

(2)由(1)知f(x)=2cos2x+
3
sin2x+b-1
=cos2x+
3
sin2x+b
=2sin(2+
π
6
)+b,
当x∈[0,
π
2
]时,2x+
π
6
∈[
π
6
6
],
∴-
1
2
≤sin(2+
π
6
)≤1,-1≤2sin(2+
π
6
)≤2,
∴f(x)∈[b-1,b+2],
∴-3≤b-1且b+2≤3,得-2≤b≤1.
点评:本题考查三角函数的最值,将f(x)化为f(x)=2sin(2+
π
6
)+b是关键,考查降幂公式、辅助角公式的应用,考查正弦函数的性质,考查分析与运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在下列命题中:①已知两条不同直线m、n两上不同平面α,β,m⊥α,n⊥β,m⊥n,则α⊥β;②函数y=sin(2x-
π
6
)图象的一个对称中心为点(
π
3
,0);③若函数f(x)在R上满足f(x+1)=
1
f(x)
,则f(x)是周期为2的函数;④在△ABC中,若
OA
+
OB
=2
CO
,则S△ABC=S△BOC其中正确命题的序号为
 

查看答案和解析>>

同步练习册答案