精英家教网 > 高中数学 > 题目详情

,其中.
(I) 若,求的值;    (II) 若,求的取值范围.

(I)(II)当时,;当时,

解析试题分析:(I)底数相同时,两对数相等则真数相等。(II)应先讨论单调性,再用单调性解不等式,应注意真数大于0。由以上条件得到的不等式组即可求的取值范围。
试题解析:解:(1),即 ∴
解得,  
检验,所以是所求的值。          5分
(2)当时,,即
 解得,            8分
时,,即
 解得,           11分
综上,当时,;当时,   12分
考点:对数的单调性。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

V为全体平面向量构成的集合,若映射f
V→R满足:
对任意向量a=(x1y1)∈Vb=(x2y2)∈V,以及任意λ∈R,均有f[λa+(1-λ)b]=λf(a)+(1-λ)f(b),则称映射f具有性质p.
现给出如下映射:
f1V→R,f1(m)=xym=(xy)∈V;
f2V→R,f2(m)=x2ym=(xy)∈V;
f3V→R,f3(m)=xy+1,m=(xy)∈V.
分析映射①②③是否具有性质p.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(a为常数)在x=1处的切线的斜率为1.
(1)求实数a的值,并求函数的单调区间,
(2)若不等式≥k在区间上恒成立,其中e为自然对数的底数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:
在(0,1)上是减函数,在(1,+∞)上是增函数;
是偶函数;
在x=0处的切线与直线y=x+2垂直.
(1)求函数的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使<,求实数m的取值范围..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若非零函数对任意实数均有,且当时,
(1)求证:
(2)求证:为减函数;
(3)当时,解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)若函数为偶函数,求的值;
(Ⅱ)若,求函数的单调递增区间;
(Ⅲ)当时,若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,试判断在定义域内的单调性;
(Ⅱ) 当时,若上有个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足:对任意,都有成立,且时,
(1)求的值,并证明:当时,
(2)判断的单调性并加以证明;
(3)若上递减,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数,如果对任意,恒有)成立,则称阶缩放函数.
(1)已知函数为二阶缩放函数,且当时,,求的值;
(2)已知函数为二阶缩放函数,且当时,,求证:函数上无零点;
(3)已知函数阶缩放函数,且当时,的取值范围是,求)上的取值范围.

查看答案和解析>>

同步练习册答案