精英家教网 > 高中数学 > 题目详情
20.数列4,1,-2,-5,…的第10项是(  )
A.-20B.-21C.-22D.-23

分析 此数列是一个等差数列,首项为4,公差为-3,求出通项即可求出答案.

解答 解:此数列是一个等差数列,首项为4,公差为-3,∴an=4-3(n-1)=-3n+7.
∴a10=-3×10+7=-23,
故选:D

点评 本题考查了数列的通项公式的求法,考查了观察能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列函数中,最小值是4的函数是(  )
A.y=x+$\frac{4}{x}$B.y=sinx+$\frac{4}{sinx}$(0<x<π)
C.y=ex+4e-xD.$y={log_3}x+\frac{4}{{{{log}_3}x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),( x2,y2),…,( xn,yn),则下列说法中不正确的是(  )
A.若残差恒为0,则R2为1
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D.若变量y和x之间的相关系数r=-0.9362,则变量y和x之间具有线性相关关系

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等差数列{an}中,am=n,an=m  (m,n∈N+),则  am+n=(  )
A.mnB.m-nC.m+nD.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15..已知函数f(x)=cosx(sinx+cosx)-0.5.
(1)若0<β<90°,sinβ=0.6,求f(β).
(2)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.sin$\frac{π}{12}$cos$\frac{π}{12}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{m}$=(sinx,$\sqrt{3}$sinx),$\overrightarrow{n}$=(sinx,-cosx),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$,若函数g(x)的图象与f(x)的图象关于坐标原点对称.
(1)当x∈[0,π]时,求函数g(x)的递增区间.
(2)在△ABC中,角A,B,C的对边分别为a,b,c,若f($\frac{A}{2}$-$\frac{π}{12}$)+g($\frac{π}{12}$+$\frac{A}{2}$)=-$\sqrt{3}$,b+c=7,bc=8,求边a的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列中,a1=1,an=$\frac{1}{{{a_{n-1}}+1}}$(n>1),则a3=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列点在曲线$\left\{\begin{array}{l}x=sin2θ\\ y=cosθ+sinθ\end{array}\right.$(θ为参数)上的有(  )个
①($\frac{1}{2},-\sqrt{2}$) ②$(-\frac{3}{4},\frac{1}{2})$③($2,\sqrt{3}$) ④($1,\sqrt{3}$)⑤(3,2)
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案