分析 (1)将函数化为y=Asin(ωx+φ)的形式,再利用sinβ=0.6,求f(β)的值.
(2)将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间;
解答 解:函数f(x)=cosx(sinx+cosx)-0.5.
化简得:f(x)=sinxcosx+cos2x-$\frac{1}{2}$
=$\frac{1}{2}$sin2x+$\frac{1}{2}+\frac{1}{2}cos2x-\frac{1}{2}$
=$\frac{\sqrt{2}}{2}sin(2x+\frac{π}{4})$
(1)∵0<β<90°,sinβ=$\frac{3}{5}$;
∴cosβ=$\frac{4}{5}$.
则f(β)=$\frac{\sqrt{2}}{2}$sin(2$β+\frac{π}{4}$)=$\frac{1}{2}$sin2β+$\frac{1}{2}$cos2β=sinβcosβ+$\frac{1}{2}(1-2si{n}^{2}β)$=$\frac{12}{25}$+$\frac{1}{2}-\frac{9}{25}$=$\frac{31}{50}$
(2)由sinx的图象及性质可得:$2x+\frac{π}{4}∈$[2kπ$-\frac{π}{2}$,2kπ$+\frac{π}{2}$](k∈Z)是单调增区间.即2kπ$-\frac{π}{2}$≤$2x+\frac{π}{4}$≤2kπ$+\frac{π}{2}$
解得:$kπ-\frac{3π}{8}≤x≤kπ+\frac{π}{8}$
所以函数f(x)的单调增区间为[$kπ-\frac{3π}{8}$,$kπ+\frac{π}{8}$](k∈Z).
点评 本题考查了三角函数的化简能力和二倍角公式的运用,以及三角函数的图象及性质.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | k<0 | B. | k<1 | C. | 0<k<1 | D. | k>1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | -4 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{5}$ | D. | 不确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com