精英家教网 > 高中数学 > 题目详情
4.已知椭圆$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{{n}^{2}}=1(m>n>0)$与双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(α>0,b>0)有相同的焦点,点A是两曲线在第一象限的交点,F是它们的右焦点,且AF⊥x轴.若椭圆的离心率为$\frac{1}{2}$,则双曲线的离心率为(  )
A.2B.$\sqrt{5}$C.2$\sqrt{3}$D.4

分析 设F(c,0),由AF⊥x轴,把F分别代入椭圆与双曲线方程可得:化为${n}^{2}(1-\frac{{c}^{2}}{{m}^{2}})$=$(\frac{{c}^{2}}{{a}^{2}}-1){b}^{2}$,又c2=m2-n2=a2+b2,可得:$\frac{{n}^{2}}{m}=\frac{{b}^{2}}{a}$.由$\sqrt{1-\frac{{n}^{2}}{{m}^{2}}}$=$\frac{1}{2}$,可得$\frac{{n}^{2}}{{m}^{2}}$=$\frac{3}{4}$.联立解得a=$\frac{m}{4}$,b=$\frac{n}{2}$,b2=$\frac{3{m}^{2}}{16}$,即可得出双曲线的离心率=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$.

解答 解:设F(c,0),由AF⊥x轴,
把F分别代入椭圆与双曲线方程可得:
$\frac{{c}^{2}}{{m}^{2}}+\frac{{y}^{2}}{{n}^{2}}=1$,$\frac{{c}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1,
化为${n}^{2}(1-\frac{{c}^{2}}{{m}^{2}})$=$(\frac{{c}^{2}}{{a}^{2}}-1){b}^{2}$,
又c2=m2-n2=a2+b2
可得:$\frac{{n}^{2}}{m}=\frac{{b}^{2}}{a}$,
∵$\sqrt{1-\frac{{n}^{2}}{{m}^{2}}}$=$\frac{1}{2}$,
∴$\frac{{n}^{2}}{{m}^{2}}$=$\frac{3}{4}$.
联立$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}={m}^{2}-{n}^{2}}\\{{b}^{2}=\frac{a{n}^{2}}{m}}\\{4{n}^{2}=3{m}^{2}}\end{array}\right.$,
解得a=$\frac{m}{4}$,b=$\frac{n}{2}$,b2=$\frac{3{m}^{2}}{16}$,
∴双曲线的离心率=$\frac{c}{a}$=$\sqrt{1+\frac{{b}^{2}}{{a}^{2}}}$=$\sqrt{1+3}$=2.
故选:A.

点评 本题考查了椭圆与双曲线的标准方程及其性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在两坐标轴上截距相等且与圆:${x^2}+{({y-\sqrt{2}})^2}=1$相切的直线有3条.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{{2}^{x}-m}{{2}^{x}-1}$为奇函数,m∈R.
(1)求m的值;
(2)判断函数f(x)的单调性,并用单调性定义证明;
(3)求函数f(x)在[-2,0)∪(0,3]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆中心在原点,焦点在x轴上且过两点$P(3,2\sqrt{7})$,Q(-6,$\sqrt{7}$)求椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数$f(x)=\left\{\begin{array}{l}{x^2},x<0\\{2^{-x}},x>0\end{array}\right.$,则f(-2)+f(3)=$\frac{33}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设随机事件A在每次试验中出现的概率为$\frac{1}{3}$,则在3次独立试验中A至少发生一次的概率为$\frac{26}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.两个变量x,y与其线性相关系数r有下列说法,其中正确的有(  )
①若r>0,则x增大时,y也增大;
②若r<0,则x增大时,y也增大;
③若r=1或r=-1,则x与y的关系完全对应(有函数关系),在散点图上各个散点都在同一条直线上;
④两个变量x,y的回归方程为y+2x+1=0,则y与x正相关.
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\left\{{\begin{array}{l}{x-1(x≥0)}\\{2{x^2}-1(x<0)}\end{array}}$,则f[f(0)]=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题成立的是(  )
A.?x0∈(0,$\frac{π}{4}$),使得sinx0cosx0=$\frac{1}{2}$B.?x∈[0,$\frac{π}{4}$],都有sinx+cosx<$\sqrt{2}$
C.?x0∈($\frac{π}{2}$,π),使得sinx0-cosx0=1D.?x∈[$\frac{3π}{4}$,$\frac{5π}{4}$],都有sin2x≤cos2x

查看答案和解析>>

同步练习册答案