精英家教网 > 高中数学 > 题目详情
已知log3x•logx2x•log2xy=log3x+log3(x-1),且3y=
1
9
9x
,求实数y的值.
∵log3x•logx2x•log2xy=log3x•
log32x
log3x
log3y
log32x
=log3y=log3x+log3(x-1)=log3(x2-x)
∴y=x2-x
3y=
1
9
9x
,即3y=3-2•32x
∴y=2x-2
∴x2-x=2x-2
解得x=2或x=1
∵x-1>0
∴x>1
∴x=2
∴y=2x-2=2
∴实数y的值为2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lg(1-x)+lg(1+x)+x4-2x2
(1)求函数f(x)的定义域;
(2)判定函数f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

【普通高中】函数f(x)=loga2x(a>0,且a≠1)的图象与函数g(x)=log22x的图象关于x轴对称,则a=(  )
A.
1
4
B.
1
2
C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

2log510+log50.25=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=loga(x-1)(0<a<1)的图象大致是(  )
A.
精英家教网
B.
精英家教网
C.
精英家教网
D.
精英家教网

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

f(x)定义域为D={x|log2(
4
|x|
-1)≥1},当x>0时f(x)单调递增
,又对于任意x1、x2∈D,有f(x1x2)=f(x1)+f(x2).
(1)将D用区间表示;
(2)求证:f(1)=f(-1)=0;
(3)解不等式:f(x)≤0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设log2a<log2b<0,则(  )
A.0<b<a<1B.0<a<b<1C.a>b>1D.b>a>1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

计算:21+
1
2
log25
+lg25+lg2lg50.

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年朝阳区一模) 从4位男教师和3位女教师中选出3位教师,派往郊区3所学校支教,每校1人.要求这3位教师中男、女教师都要有,则不同的选派方案共有                                   (    )

       A.210种                B.186种                C.180种                D.90种

查看答案和解析>>

同步练习册答案