精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{b}{a}}}({x^2}-4x+13)$,则函数g(x)的最小值为(  )
A.2log23B.2C.3D.不确定

分析 求出f(x)的对称轴方程,由题意可得f(x)关于x=2对称,即有b=3a,可得g(x)=log3(x2-4x+13),由配方和对数函数的单调性,即可求得最小值.

解答 解:函数f(x)=(x-1)(ax-b)=ax2-(a+b)x+b,
对称轴为x=$\frac{a+b}{2a}$,
由f(2-x)=f(2+x),可得f(x)的对称轴为x=2,
即有a+b=4a,即b=3a,
则g(x)=log3(x2-4x+13)=log3[(x-2)2+9],
由(x-2)2+9≥9,可得log3[(x-2)2+9]≥log39=2,
当x=2时,g(x)取得最小值2.
故选:B.

点评 本题考查函数的对称性和单调性的运用,考查函数的最值的求法,注意运用二次函数的值域求法和对数函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知集合 A={x|x2-x-12>0},B={x|x≥m}.若 A∩B={x|x>4},则实数m的取值范围是((  )
A.(-4,3)B.[-3,4]C.(-3,4)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x-y=1上的概率为(  )
A.$\frac{1}{12}$B.$\frac{1}{9}$C.$\frac{5}{36}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}通项为${a_n}=ncos({\frac{nπ}{2}+\frac{π}{6}})$(n∈N*),Sn为其前n项的和,则S2015=504+502$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数$y=\sqrt{{x^2}+x-12}$+$\frac{{9+{x^2}}}{{9-{x^2}}}$的定义域是{x|x≤-4或x>3}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知点(α,-1)在函数y=log2x的图象上,则函数y=xα的定义域为(  )
A.{x|x≥0}B.{x|x>0}C.{x|x∈R,x≠0}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和Sn=n2+2n,数列{bn}满足3nbn+1=(n+1)an+1-nan,且b1=3.
(1)求an,bn
(2)若Tn为数列{bn}的前n项和,求Tn,并求满足Tn<7时n的最大值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.当关于x的方程的根满足下列条件时,求实数a的取值范围:
(1)方程x2-ax+a2+2=0的两个根一个大于2,另一个小于2;
(2)方程ax2+3x+4a=0的两根都小于1;
(3)方程7x2-(a+13)x+a2-a-2=0的一个根在(0,1)内,另一个根在(1,2)内.

查看答案和解析>>

同步练习册答案