精英家教网 > 高中数学 > 题目详情
20.若双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于9.

分析 设|PF2|=x,由双曲线的定义及性质得|x-3|=6,由此能求出|PF2|.

解答 解:设|PF2|=x,
∵双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,
∴a=3,b=4.c=5,
∴|x-3|=6,解得x=9或x=-3(舍).
∴|PF2|=9.
故答案为:9.

点评 本题考查双曲线中线段长的求法,是基础题,解题时要注意双曲线定义及简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数f(x)图象上的两点P,Q的横坐标依次为1,5,O为坐标原点,求S△OPQ

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.平行四边形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,则该四边形的面积为(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列不等式中成立的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a>b>0,则$\frac{b}{a}$>$\frac{b+1}{a+1}$D.若a>b>0,则a+$\frac{1}{b}$>b+$\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.与双曲线与$\frac{x^2}{3}-{y^2}=1$有共同渐近线且与椭圆$\frac{x^2}{3}+{y^2}=1$有共同焦点,则此双曲线的方程为$\frac{{x}^{2}}{\frac{3}{2}}-\frac{{y}^{2}}{\frac{1}{2}}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某甜品店制作一种蛋筒冰激凌,其上部分是半球形,下半部分呈圆锥形(如图),现把半径为10cm的圆形蛋皮等分成5个扇形蛋皮,用一个扇形蛋皮围成圆锥的侧面(蛋皮的厚度忽略不计).
(1)求该蛋筒冰激凌的高度;
(2)求该蛋筒冰激凌的体积(精确到0.01cm3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数$f(x)=(x-1)(ax-b),f(2-x)=f(2+x),g(x)={log_{\frac{b}{a}}}({x^2}-4x+13)$,则函数g(x)的最小值为(  )
A.2log23B.2C.3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x2-4ax+a2-2a+2.
(1)若函数f(x)在区间[0,2]上的最大值记为g(a),求g(a)的解析式;
(2)若函数f(x)在区间[0,2]上的最小值为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.给出下面几种说法:
①相等向量的坐标相同;
②平面上一个向量对应于平面上唯一的坐标;
③一个坐标对应于唯一的一个向量;
④平面上一个点与以原点为始点,该点为终点的向量一一对应.
其中正确说法的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案