精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数f(x)图象上的两点P,Q的横坐标依次为1,5,O为坐标原点,求S△OPQ

分析 (1)由题意和三角函数公式化简,由周期公式和整体法可得;
(2)由题意易得P和Q的坐标,进而可得$|{OP}|=\sqrt{5},|{OQ}|=\sqrt{29}$,由向量的夹角公式和三角函数基本关系可得sin∠POQ,由三角形的面积公式可得.

解答 解:(1)由题意和三角函数公式化简可得:
$f(x)=2\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+\sqrt{2}(2{cos^2}\frac{π}{8}x-1)$
=$\sqrt{2}sin\frac{π}{4}x+\sqrt{2}cos\frac{π}{4}x=2sin(\frac{π}{4}x+\frac{π}{4})$,
∴函数f(x)的最小正周期为$T=\frac{2π}{{\frac{π}{4}}}=8$,
由$2kπ-\frac{π}{2}≤\frac{π}{4}x+\frac{π}{4}≤2kπ+\frac{π}{2}$(k∈Z)得8k-3≤x≤8k+1(k∈Z),
∴函数f(x)的单调递增区间是[8k-3,8k+1](k∈Z);
(2)∵$f(1)=2sin({\frac{π}{4}+\frac{π}{4}})=2,f(5)=2sin({\frac{5π}{4}+\frac{π}{4}})=-2$,
∴P(1,2),Q(5,-2),∴$|{OP}|=\sqrt{5},|{OQ}|=\sqrt{29}$,
∴$cos∠POQ=\frac{{\overrightarrow{OP}•\overrightarrow{OQ}}}{{|{\overrightarrow{OP}}|•|{\overrightarrow{OQ}}|}}=\frac{1}{{\sqrt{5}•\sqrt{29}}}$,
∴$sin∠POQ=\sqrt{1-{{cos}^2}∠POQ}=\frac{12}{{\sqrt{5}•\sqrt{29}}}$,
∴${S_{△OPQ}}=\frac{1}{2}|{OP}|•|{OQ}|sin∠POQ=6$.

点评 本题考查三角函数的单调性和周期性,涉及三角形的面积的求解和向量的知识,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为(  )
A.y=x-1B.y=(x+1)2C.f(x)=4x2-mx+5D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知指数函数f(x)=ax(a>0,且a≠1)图象过点$(3,\frac{1}{8})$.
(1)求f(x)的解析式;
(2)利用第(1)的结论,比较a-0.1与a-0.2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足$\frac{\sqrt{3}a}{sinA}=\frac{b}{cosB}$.
(1)求角B的大小;
(2)求$\sqrt{3}$sinA-cosC的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P是椭圆16x2+25y2=400上一点,且在x轴上方,F1,F2分别是椭圆的左、右焦点,直线PF2的斜率为$-2\sqrt{2}$,则△PF1F2的面积为8$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是R上的奇函数,若f(1)=2则f(-1)+f(0)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合 A={x|x2-x-12>0},B={x|x≥m}.若 A∩B={x|x>4},则实数m的取值范围是((  )
A.(-4,3)B.[-3,4]C.(-3,4)D.(-∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)=ax3-x在(-∞,+∞)内是减函数,则实数a的取值范围是(  )
A.a≤0B.a<1C.a<2D.a<$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若双曲线E:$\frac{x^2}{9}-\frac{y^2}{16}$=1的左、右焦点分别为F1,F2,点P在双曲线E上,且|PF1|=3,则|PF2|等于9.

查看答案和解析>>

同步练习册答案