精英家教网 > 高中数学 > 题目详情
从正方体的八个顶点中任取四个点连线,在能构成的一对异面直线中,其所成的角的度数不可能是
A.30°B.45°C.60°D.90°

试题分析:结合正方体直观图可知,其所成的角的度数可能是45°,60°,90°不可能是30°。故选A。
点评:简单题,结合正方体直观图可知,其所成的角的度数可能是45°,60°,90°不可能是30°。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直角梯形与等腰直角三角形所在的平面互相垂直.

(1)求证:
(2)求直线与平面所成角的正弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点D,则异面直线AD与所成的角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,点E在线段AD上,且CE∥AB。

求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四面体OABC中,OA、OB、OC两两相互垂直,,D为四面体OABC外一点.给出下列命题:①不存在点D,使四面体ABCD有三个面是直角三角形;②不存在点D,使四面体ABCD是正三棱锥;③存在点D,使CD与AB垂直并相等;④存在无数个点D,使点O在四面体ABCD的外接球面上.则其中正确命题的序号是(  )
A.①②            B.②③            C.①③            D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β为 ,动点P.Q分别在面α.β内,P到β的距离为,Q到α的距离为,则P. Q两点之间距离的最小值为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形与梯形所在的平面互相垂直,,,点在线段上.

(I)当点中点时,求证:∥平面
(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥 的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正四棱柱中,分别是的中点,则以下结论中不成立的是(   )
A.垂直B.垂直
C.异面D.异面

查看答案和解析>>

同步练习册答案