精英家教网 > 高中数学 > 题目详情
已知四面体OABC中,OA、OB、OC两两相互垂直,,D为四面体OABC外一点.给出下列命题:①不存在点D,使四面体ABCD有三个面是直角三角形;②不存在点D,使四面体ABCD是正三棱锥;③存在点D,使CD与AB垂直并相等;④存在无数个点D,使点O在四面体ABCD的外接球面上.则其中正确命题的序号是(  )
A.①②            B.②③            C.①③            D.③④
D

试题分析:

对于①,∵四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,∴AC=BC=,AB=2,当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2,四面体ABCD的三条棱DA、DB、DC两两垂直,此时点D,使四面体ABCD有三个面是直角三角形,故①不正确;对于②,由①知AC=BC=,AB=2,使AB=AD=BD,此时存在点D,CD=,使四面体C-ABD是正三棱锥,故②不正确;对于③,取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故③正确;对于④,先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可,∴存在无数个点D,使点O在四面体ABCD的外接球面上,故④正确,故正确的命题有③④,故选D.
点评:本题考查棱锥的结构特征,同时考查了空间想象能力,转化与划归的思想,以及构造法的运用,属于中档题
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,△ABC中,ACBCABABED是边长为1的正方形,EB⊥底面ABC,若GF分别是ECBD的中点.
(1)求证:GF底面ABC
(2)求证:AC⊥平面EBC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱柱的底面是边长为1的正方形,侧棱垂直底边ABCD四棱柱,
E是侧棱AA1的中点,求

(1)求异面直线与B1E所成角的大小;
(2)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F分别为AB、CB中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为60º,则截面的面积为(    ).

A.3或1    B.1    C.4或1    D.3或4  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在△中,,点上,.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面

(Ⅰ)求证:平面
(Ⅱ)设,当为何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从正方体的八个顶点中任取四个点连线,在能构成的一对异面直线中,其所成的角的度数不可能是
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.

(Ⅰ)求多面体EF-ABCD的体积;
(Ⅱ)求直线BD与平面BCF所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在直棱柱中,当底面四边形满足      时,有成立.(填上你认为正确的一个条件即可)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图4,在三棱柱中,△是边长为的等边三角形,
平面分别是的中点.

(1)求证:∥平面
(2)若上的动点,当与平面所成最大角的正切值为时,
求平面 与平面所成二面角(锐角)的余弦值.

查看答案和解析>>

同步练习册答案