精英家教网 > 高中数学 > 题目详情
如图,在直棱柱ABC—A1B1C1中,AC=BC=2,∠ACB=90º,AA1=2,E,F分别为AB、CB中点,过直线EF作棱柱的截面,若截面与平面ABC所成的二面角的大小为60º,则截面的面积为(    ).

A.3或1    B.1    C.4或1    D.3或4  
A

试题分析:根据截面与平面ABC所成的二面角的大小为60°,故需要分类讨论,利用截面为梯形,可以计算各边长,从而可求截面的面积.解:解:由题意,分类讨论:如右图,

截面为MNFE,延长EM,CN,AA1,交于点D,∵直棱柱ABC-A1B1C1中,∠ACB=90°,E、F分别是AC、AB的中点,∴DE⊥EF,∴∠AED为截面与平面ABC所成的二面角,∴∠AED=60°,∵AE= AC=1,∴DE=2∵EF=
BC=1∴SDEF=×2×1=1,∵DA=6,∴DA1=DA∴SDMN=SDEF=,∴截面的面积为1
设截面EFN'M'在底面中的射影为EFPQ,则EF=1,M'Q=2,CE=1,∠M'EQ=60°,∴EQ=
∴PQ=∴射影EFPQ的面积为,∵截面与平面ABC所成的二面角的大小为60°,∴截面EFN'M'的面积为÷cos60°=3故答案为A
点评:本题以直三棱柱为载体,考查截面面积的计算,搞清截面图形是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是平行四边形,M、N分别是AB、PC的中点,且.证明:平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面
的中点.

(Ⅰ)求和平面所成的角的大小;
(Ⅱ)证明平面
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点D,则异面直线AD与所成的角的余弦值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中点。

(I)求证:A1B∥平面AMC1
(II)求直线CC1与平面AMC1所成角的正弦值;
(Ⅲ)试问:在棱A1B1上是否存在点N,使AN与MC1成角60°?若存在,确定点N的位置;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,点E在线段AD上,且CE∥AB。

求证:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四面体OABC中,OA、OB、OC两两相互垂直,,D为四面体OABC外一点.给出下列命题:①不存在点D,使四面体ABCD有三个面是直角三角形;②不存在点D,使四面体ABCD是正三棱锥;③存在点D,使CD与AB垂直并相等;④存在无数个点D,使点O在四面体ABCD的外接球面上.则其中正确命题的序号是(  )
A.①②            B.②③            C.①③            D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四边形中,对角线,的重心,过点的直线分别交,沿折起,沿折起,正好重合于.

(Ⅰ) 求证:平面平面
(Ⅱ)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,是两条不同的直线,,,是三个不同的平面.有下列四个命题:
①若,则;②若,则
③ 若,则;④ 若,则
其中错误命题的序号是(      )
A.①④B.①③C.②③④D.②③

查看答案和解析>>

同步练习册答案