精英家教网 > 高中数学 > 题目详情
如下图,已知ABCD—A′B′C′D′是平行六面体.

(1)化简+,并在图中标出其结果;

(2)设M是底面ABCD的中心,N是侧面BCC′B′对角线BC′上的34分点,设,试求α,β,γ的值.

解:(1)如图所示,取AA′的中点为E,则.

,,取F为D′C′的一个三等分点(D′F=D′C′),则=.

所以+=.

表示法不唯一、方法之一已在上图中标出.

(2)

=+=()+()

=(-)+()=++,

所以α=,β=,γ=.


练习册系列答案
相关习题

科目:高中数学 来源:湖北省荆州中学2008高考复习立体几何基础题题库二(有详细答案)人教版 人教版 题型:013

如下图,已知ABCDABEFCDFE都是长方形,且平面ABCD⊥平面ABEF.记∠FCE,∠CFB=α,∠CEB=β,则有

[  ]

A.sinβ=sinα·sin

B.cosα=cosβ·cos

C.sinα=sinβ·cos

D.sinβ=sinα·cos

查看答案和解析>>

科目:高中数学 来源:2007年普通高等学校招生全国统一考试、数学(江苏卷) 题型:044

如下图,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1,

(1)求证:E,B,F,D1四点共面;

(2)若点G在BC上,,点M在BB1上,GM⊥BF,垂足为H,求证:EM⊥面BCC1B1

(3)用θ表示截面EBFD1和面BCC1B1所成锐二面角大小,求tanθ.

查看答案和解析>>

科目:高中数学 来源:江西省新余一中2011-2012学年高二下学期第一次段考数学理科试题 题型:044

如下图,已知ABCD为正方形,AE⊥平面ABCD,DF⊥平面ABCD,AD=DF=2AE=2.

(1)求证:平面BEF⊥平面BDF;

(2)求点A到平面BEF的距离;

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,已知ABCD为矩形,PA⊥平面ABCD,AE⊥PB于点E,EF⊥PC于点F.

(1)求证:AF⊥PC;

(2)设平面AEF交PD于点G,求证:AG⊥PD.

查看答案和解析>>

同步练习册答案