精英家教网 > 高中数学 > 题目详情
18.判断函数y=$\frac{1}{{x}^{2}-1}$的单调性,并证明.

分析 先判断函数y在(-∞,-1)和(-1,0)以及(0,1)和(1,+∞)上的单调性,
再用单调性的定义证明即可.

解答 解:函数y=$\frac{1}{{x}^{2}-1}$在(-∞,-1)和(-1,0)上是单调增函数,
在(0,1)和(1,+∞)上是单调减函数;
证明如下:任取x1,x2∈(1,+∞),且x1<x2
则f(x1)-f(x2)=$\frac{1}{{{x}_{1}}^{2}-1}$-$\frac{1}{{{x}_{2}}^{2}-1}$=$\frac{({{x}_{2}-x}_{1}){{(x}_{2}+x}_{1})}{{{(x}_{1}}^{2}-1){{(x}_{2}}^{2}-1)}$,
∵1<x1<x2,∴x2-x1>0,x2+x1>0,(${{x}_{1}}^{2}$-1)(${{x}_{2}}^{2}$-1)>0;
∴f(x1)-f(x2)>0,
即f(x1)>f(x2);
∴f(x)在区间(1,+∞)上是单调减函数;
同理可证,f(x)在区间(-∞,-1)和(-1,0)以及(0,1)上的单调性.

点评 本题考查了函数单调性的判断与证明的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2a•4x-2x-1,若关于x的方程f(x)=0有实数解,则实数a的取值范围为(  )
A.$[{-\frac{1}{8},+∞})$B.$({-∞,-\frac{1}{8}})$C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列函数零点所在的区间及零点的个数.
(1)f(x)=2x2-5x+1;
(2)f(x)=lnx+x2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}的通项满足a1=1,且an+1=an+n+2n,则an=(  )
A.$\frac{n(n-1)}{2}$+2n-1-1B.$\frac{n(n-1)}{2}$+2n-1C.$\frac{n(n+1)}{2}$+2n-1-1D.$\frac{n(n+1)}{2}$+2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2x,且f(a+2)=8.
(1)求a的值;
(2)设函数g(x)=a-$\frac{2a}{f(x)+1}$,判断g(x)的单调性,并用定义法证明;
(3)若函数h(x)=meax+e2x(其中e=2.718…),x∈[0,ln2]的最小值为0,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直角△ABC的三个顶点都在单位圆x2+y2=1上,点M($\frac{1}{2}$,$\frac{1}{2}$).则|$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}$|最大值是(  )
A.$\sqrt{2}+1$B.$\sqrt{2}+2$C.$\frac{3\sqrt{2}}{2}+1$D.$\frac{3\sqrt{2}}{2}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=ax2+bx+c(a≠0),曲线y=f(x)通过点(0,2a+3),且在点(-1,f(-1))处的切线垂直于y轴.
(1)用a分别表示b和c;
(2)讨论函数g(x)=-f(x)•e-x的单调性;
(3)当a=-3时,若对任意的x1,x2∈[-2,+∞),不等式|g(x1)-g(x2)≤M恒成立,求M的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知l1:x+3y-15=0与l2:y-3mx+6=0夹角为$\frac{π}{4}$,
(1)求m的值;
(2)若实数x2+y2-2x+4y=0,求x-2y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x3+2,则f′(2)=12.

查看答案和解析>>

同步练习册答案