精英家教网 > 高中数学 > 题目详情

【题目】如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为(
A.
B.
C.
D.

【答案】D
【解析】解:记“硬币落下后与小圆无公共点”为事件A, 硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π,
无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2cm,以纸板的圆心为圆心,作一个半径2cm的圆,
硬币的圆心在此圆外面,则硬币与半径为1cm的小圆无公共交点.
所以有公共点的概率为
无公共点的概率为P(A)=1﹣ =
故选:D.
由题意可得,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,硬币与小圆无公共点,硬币圆心距离小圆圆心要大于2,先求出硬币落在纸板上的面积,然后再求解硬币落下后与小圆没交点的区域的面积,代入古典概率的计算方式可求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 的最小正周期为π.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若a,b,c分别为△ABC的三内角A,B,C的对边,角A是锐角,f(A)=0,a=1,b+c=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4sin (ω>0). (Ⅰ)若ω=3,求f(x)在区间 上的最小值;
(Ⅱ)若函数f(x)的图象如图所示,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四边形CDEF为正方形,平面CDEF⊥平面ABCD.
(Ⅰ)若点G是棱AB的中点,求证:EG∥平面BDF;
(Ⅱ)求直线AE与平面BDF所成角的正弦值;
(Ⅲ)在线段FC上是否存在点H,使平面BDF⊥平面HAD?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学随机选取了40名男生,将他们的身高作为样本进行统计,得到如图所示的频率分布直方图.观察图中数据,完成下列问题.
(Ⅰ)求a的值及样本中男生身高在[185,195](单位:cm)的人数;
(Ⅱ)假设同一组中的每个数据可用该组区间的中点值代替,通过样本估计该校全体男生的平均身高;
(Ⅲ)在样本中,从身高在[145,155)和[185,195](单位:cm)内的男生中任选两人,求这两人的身高都不低于185cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(sinx,﹣1),向量 =( cosx,﹣ ),函数f(x)=( +
(1)求f(x)的最小正周期T;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2 ,c=4,且f(A)恰是f(x)在[0, ]上的最大值,求A和b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二分法是求方程近似解的一种方法,其原理是“一分为二、无限逼近”.执行如图所示的程序框图,若输入x1=1,x2=2,d=0.01则输出n的值(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆 (a>b>0)的左右顶点分别是A(﹣ ,0),B( ,0),离心率为 .设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点是O.

(Ⅰ)证明:OP⊥BC;
(Ⅱ)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数y=cos(2x+ )的图象沿x轴向右平移φ(φ>0)个单位,得到一个偶函数的图象,则φ的一个可能取值为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案