精英家教网 > 高中数学 > 题目详情
已知如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABC,垂足G在AD上,且AG=GD,GB⊥GC,GB=GC=2,PC=4,E是BC的中点.
(Ⅰ)求证:PC⊥BG;
(Ⅱ)求异面直线GE与PC所成角的余弦值;
(Ⅲ)若F是PC上一点,且DF⊥GC,求的值。
(Ⅰ)证明:因为PG⊥平面ABC,
所以PG⊥BC,
又BG⊥CG,
所以BG⊥面PCG,
所以PC⊥BG。
(Ⅱ)解:建立如图所示的空间直角坐标系,各点坐标如图所示,


(Ⅲ)设
则点


由DF⊥DC,得
,解得:
练习册系列答案
相关习题

科目:高中数学 来源:河南省安阳市2009届高三年级二模模拟试卷、数学试题(理科) 题型:044

已知如图四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上.

(1)求异面直线PA与CD所成的角的大小;

(2)在棱PD上是否存在一点E,使BE⊥平面PCD?;

(3)求二面角A-PD-B的大小.

查看答案和解析>>

科目:高中数学 来源:0108 模拟题 题型:解答题

已知如图四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE,
(Ⅰ)求异面直线PA与CD所成的角的大小;
(Ⅱ)求证:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(I)求异面直线PA与CD所成的角的大小;

(II)求证:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(I)求异面直线PA与CD所成的角的大小;

(II)求证:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中数学 来源:浙江省菱湖中学2010-2011学年高三10月月考数学理 题型:解答题

 

已知如图四棱锥P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(1)求异面直线PA与CD所成的角的大小;

    (2)求证:BE⊥平面PCD;

    (3)求二面角A—PD—B的大小.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案