精英家教网 > 高中数学 > 题目详情
6.函数y=x3+ln($\sqrt{{x}^{2}+1}$-x)的图象大致为(  )
A.B.C.D.

分析 确定函数是奇函数,利用f(1)=0,f(2)=8+ln($\sqrt{5}$-2)>0,即可得出结论.

解答 解:由题意,f(-x)=(-x)3+ln($\sqrt{{x}^{2}+1}$+x)=-f(x),函数是奇函数,
f(1)=0,f(2)=8+ln($\sqrt{5}$-2)>0,
故选B.

点评 本题考查函数的奇偶性,考查函数的图象,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.“|a|>|b|”是“lna>lnb”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数在其定义域上既是奇函数又是减函数的是(  )
A.f(x)=-x|x|B.f(x)=xsinxC.$f(x)=\frac{1}{x}$D.$f(x)={x^{\frac{1}{2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设集合A={x|x2-3x<0},B={x|x>2},则A∩∁RB=(  )
A.{x|-2≤x<3}B.{x|0<x≤2}C.{x|-2≤x<0}D.{x|2≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合U={-1,0,1},B={x|x=m2,m∈U},则∁UB=(  )
A.{0,1}B.{-1,0,1}C.D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若α、β∈R,则“α≠β”是“tanα≠tanβ”成立的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.国内某知名连锁店分店开张营业期间,在固定的时间段内消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,该分店经理对开业前7天参加抽奖活动的人数进行统计,y表示开业第x天参加抽奖活动的人数,得到统计表格如下:
 x 1 2 3 4 5 6 7
 y 510 14 15 17 
经过进一步统计分析,发现y与x具有线性相关关系.
(Ⅰ)若从这7天随机抽取两天,求至少有1天参加抽奖人数超过10的概率;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\stackrel{∧}{y}$=bx+$\stackrel{∧}{a}$,并估计若该活动持续10天,共有多少名顾客参加抽奖.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i-1}^{7}{x}_{i}^{2}$=140,$\sum_{i=1}^{7}{x}_{i}{y}_{i}$=364.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)={e^x}-\frac{1}{2}{x^2}$.设l为曲线y=f(x)在点P(x0,f(x0))处的切线,其中x0∈[-1,1].
(Ⅰ)求直线l的方程(用x0表示);
(Ⅱ)设O为原点,直线x=1分别与直线l和x轴交于A,B两点,求△AOB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线M:y=x2,圆N:x2+(y-2)2=1.
(1)过点A(1,1)作圆N的切线交抛物线M于点B,求点B的坐标;
(2)过点A(a,a2)(a≠±1)作圆N的两条切线AB,AC交抛物线M于点B,C,连接BC,判断直线BC与圆N的位置关系.

查看答案和解析>>

同步练习册答案