精英家教网 > 高中数学 > 题目详情
14.设集合A={x|x2-3x<0},B={x|x>2},则A∩∁RB=(  )
A.{x|-2≤x<3}B.{x|0<x≤2}C.{x|-2≤x<0}D.{x|2≤x<3}

分析 先分别求出集合A,B,从而得到CRB,由此能求出A∩∁RB.

解答 解:∵集合A={x|x2-3x<0}={x|0<x<3},B={x|x>2},
∴CRB={x|x≤2},
A∩∁RB={x|0<x≤2}.
故选:B.

点评 本题考查补集、交集的求法,考查推理论证能力、运算求解能力,考查转化化归思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知直线x-y+1=0与双曲线$\frac{{x}^{2}}{a}$+$\frac{{y}^{2}}{b}$=1(ab<0)相交于P,Q两点,且OP⊥OQ(O为坐标原点),则$\frac{1}{a}+\frac{1}{b}$=(  )
A.1B.$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点A(4,0),抛物线C:y2=2px(0<p<4)的准线为l,点P在C上,作PH⊥l于H,且|PH|=|PA|,∠APH=120°,则p=$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,且a2=8,Sn=$\frac{{a}_{n+1}}{2}$-n-1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{$\frac{2×{3}^{n}}{{a}_{n}{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=(x+1)ex则对任意的m∈R,函数F(x)=f(f(x))-m的零点个数至多有(  )
A.3个B.4个C.6个D.9个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知各项均为正数的数列{an}满足(2an+1-an)(an+1an-1)=0(n∈N*),且a1=a10,则首项a1所有可能取值中最大值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=x3+ln($\sqrt{{x}^{2}+1}$-x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若sin(α+β)=2sin(α-β)=$\frac{1}{2}$,则sinαcosβ的值为(  )
A.$\frac{3}{8}$B.$-\frac{3}{8}$C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在边长为4的长方形ABCD中,动圆Q的半径为1,圆心Q在线段BC(含端点)上运动,P是圆Q上及内部的动点,设向量$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AD}$(m,n为实数),则m+n的取值范围是(  )
A.$[{1-\frac{{\sqrt{2}}}{4},2+\frac{{\sqrt{2}}}{4}}]$B.$[{\frac{3}{4},2+\frac{{\sqrt{2}}}{4}}]$C.$[{\frac{3}{4},\frac{9}{4}}]$D.$[{1-\frac{{\sqrt{2}}}{4},\frac{9}{4}}]$

查看答案和解析>>

同步练习册答案