精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)

【答案】B
【解析】解:作函数f(x)= ,的图象如下,

由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;

故x3(x1+x2)+ =﹣ +x4

其在1<x4≤2上是增函数,

故﹣2+1<﹣ +x4≤﹣1+2;

即﹣1<﹣ +x4≤1;

所以答案是:B.

【考点精析】本题主要考查了函数的零点与方程根的关系的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)= x2+10x(万元);当年产量不小于80千件时C(x)=51x+ ﹣1450(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合D= ,有下面四个命题:
p1(x,y)∈D, ≥3 p2(x,y)∈D, <1
p3(x,y)∈D, <4 p4(x,y)∈D, ≥2
其中的真命题是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在多面体ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F为AB的中点.

(1)求证:EF∥平面ACD;
(2)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在l上的投影为N,则 的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C1 +y2=1,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.

(1)求实数b的值;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA、MB分别与C1相交于D、E.
①证明: =0;
②记△MAB,△MDE的面积分别是S1 , S2 . 若 =λ,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日,甲乙二人随机选择早上6:00﹣7:00的某一时刻到达黔灵山公园早锻炼,则甲比乙提前到达超过20分钟的概率为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x|x﹣a|.
(1)讨论f(x)的奇偶性;
(2)当0≤x≤1时,求f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +
(1)求函数f(x)的定义域和值域;
(2)设F(x)= [f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若﹣m2+2tm+ ≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案