【题目】已知函数f(x)= ,若方程f(x)=a有四个不同的解x1 , x2 , x3 , x4 , 且x1<x2<x3<x4 , 则x3(x1+x2)+ 的取值范围是( )
A.(﹣1,+∞)
B.(﹣1,1]
C.(﹣∞,1)
D.[﹣1,1)
【答案】B
【解析】解:作函数f(x)= ,的图象如下,
由图可知,x1+x2=﹣2,x3x4=1;1<x4≤2;
故x3(x1+x2)+ =﹣ +x4,
其在1<x4≤2上是增函数,
故﹣2+1<﹣ +x4≤﹣1+2;
即﹣1<﹣ +x4≤1;
所以答案是:B.
【考点精析】本题主要考查了函数的零点与方程根的关系的相关知识点,需要掌握二次函数的零点:(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点;(2)△=0,方程 有两相等实根(二重根),二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点;(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)= x2+10x(万元);当年产量不小于80千件时C(x)=51x+ ﹣1450(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合D= ,有下面四个命题:
p1:(x,y)∈D, ≥3 p2:(x,y)∈D, <1
p3:(x,y)∈D, <4 p4:(x,y)∈D, ≥2
其中的真命题是( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在多面体ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F为AB的中点.
(1)求证:EF∥平面ACD;
(2)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】抛物线y2=2px(p>0)的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足∠AFB= .设线段AB的中点M在l上的投影为N,则 的最大值是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C1: +y2=1,x轴被曲线C2:y=x2﹣b截得的线段长等于C1的长半轴长.
(1)求实数b的值;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA、MB分别与C1相交于D、E.
①证明: =0;
②记△MAB,△MDE的面积分别是S1 , S2 . 若 =λ,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= + .
(1)求函数f(x)的定义域和值域;
(2)设F(x)= [f2(x)﹣2]+f(x)(a为实数),求F(x)在a<0时的最大值g(a);
(3)对(2)中g(a),若﹣m2+2tm+ ≤g(a)对a<0所有的实数a及t∈[﹣1,1]恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com