精英家教网 > 高中数学 > 题目详情
7.已知斜率为1的直线l过椭圆$\frac{y{\;}^{2}}{8}$+$\frac{x{\;}^{2}}{4}$=1的下焦点,交椭圆于A、B两点,求AB的长.

分析 求出直线方程,代入椭圆方程,求得交点的坐标,即可求得弦AB的长.

解答 解:椭圆$\frac{y{\;}^{2}}{8}$+$\frac{x{\;}^{2}}{4}$=1的下焦点坐标为(0,-2)
∵斜率为1的直线过椭圆$\frac{y{\;}^{2}}{8}$+$\frac{x{\;}^{2}}{4}$=1的下焦点,
∴可设直线方程为y=x-2,
代入椭圆方程可得3x2-4x-4=0
∴x=2,或x=-$\frac{2}{3}$
∴弦AB的长为$\sqrt{2}$×$\frac{8}{3}$=$\frac{8}{3}$$\sqrt{2}$.

点评 本题考查直线与椭圆相交时的弦长,解题的关键是确定交点的坐标,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.化简$({a}^{3}{b}^{\frac{1}{2}})^{\frac{1}{2}}$÷(${a}^{\frac{1}{2}}$b${\;}^{\frac{1}{4}}$)(a>0,b>0)结果为(  )
A.aB.bC.$\frac{a}{b}$D.$\frac{b}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=cos(ωx-$\frac{π}{3}$)(ω∈N*)图象的一条对称轴是x=$\frac{π}{6}$,则ω的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知角α终边上有一点P(x,1),且cosα=-$\frac{1}{2}$,则tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A,B为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)和双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的公共顶点,P,Q分别为双曲线和椭圆上不同于A,B的动点,且有$\overrightarrow{AP}$+$\overrightarrow{BP}$=λ($\overrightarrow{AQ}$+$\overrightarrow{BQ}$)(λ∈R),设AP,BP,AQ,BQ的斜率分别为k1,k2,k3,k4,且m=
(k1,k2),n=(k2,k1) 
(1)求证:m⊥n;
(2)求$\frac{{k}_{2}}{{k}_{1}}$+$\frac{{k}_{1}}{{k}_{2}}$+$\frac{{k}_{3}}{{k}_{4}}$+$\frac{{k}_{4}}{{k}_{3}}$的值;
(3)设F2′,F2分别为双曲线和椭圆的右焦点,且PF2′∥QF2,试判断k12+k22+k32+k42是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(α)=$\frac{sin(\frac{3π}{2}+α)cos(2π-a)tan(π+α)}{cos(-\frac{π}{2}-α)}$,则f(-$\frac{31π}{3}$)的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知椭圆$\frac{x^2}{a^2}+{y^2}=1(a>1)$的长轴长是短轴长的2倍,右焦点为F,点B,C分别是该椭圆的上、下顶点,点P是直线l:y=-2上的一个动点(与y轴交点除外),直线PC交椭圆于另一点M,记直线BM,BP的斜率分别为k1,k2
(1)当直线PM过点F时,求$\overrightarrow{PB}•\overrightarrow{PM}$的值;
(2)求|k1|+|k2|的最小值,并确定此时直线PM的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一个样本容量为50的数据分组,各组的频数如下:[17,19],1;(19,21],1;(21,23],3;(23,25],3;(25,27],18;(27,29],10;(29,31],8;(31,33],6.根据样本频率分布,估计小于或等于31的数据大约占总体的(  )
A.88%B.42%C.40%D.16%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=lnx+2x+x${\;}^{\frac{1}{2}}$-1,则不等式f(x)>f(2x-4)的解集为(  )
A.(-∞,4)B.(0,4)C.(2,4)D.(2,+∞)

查看答案和解析>>

同步练习册答案