精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD的平行四边形,∠ADC=60°, ,PA⊥面ABCD,E为PD的中点.
(Ⅰ)求证:AB⊥PC
(Ⅱ)若PA=AB= ,求三棱锥P﹣AEC的体积.

【答案】(Ⅰ)证明:因为PA⊥面ABCD,又AB平面ABCD,

所以AB⊥PA,

又因为∠ABC=∠ADC=60°,

在△ABC中,由余弦定理有:

AC2=AB2+BC2﹣2ABBCcos60°=BC2﹣AB2

所以AB2+AC2=BC2

即:AB⊥AC,

又因为PA∩AC=A,又PA平面PAC,AC平面PAC,

所以AB⊥平面PAC,

又PC平面PAC,所以AB⊥PC.

(Ⅱ)解:由已知有:

所以PA=AB=2,AD=4,因为PA⊥面ABCD

且E为PD的中点,所以E点到平面ADC的距离为

所以三棱锥P﹣AEC的体积:

VPAEC=VDAEC=VEADC=

= ×


【解析】(1)因为PA⊥面ABCD,则AB⊥PA,根据边角的大小关系,由余弦定理可证出△ABC为直角三角形,即AB⊥AC,从而可证出AB⊥面PAC,即AB⊥PC,(2)由已知可得出其各边的大小,由于E为PD的中点,则不难得出E到面ADC的距离为1,VPAEC=VDAEC=VEADC= S △ A D C,即可得出结果.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对的边分别为a,b,c且acosB=4,bsinA=3.
(1)求tanB及边长a的值;
(2)若△ABC的面积S=9,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,MCN是某海湾旅游区的一角,为营造更加优美的旅游环境,旅游区管委会决定建立面积为4 平方千米的三角形主题游戏乐园ABC,并在区域CDE建立水上餐厅.已知∠ACB=120°,∠DCE=30°.
(1)设AC=x,AB=y,用x表示y,并求y的最小值;
(2)设∠ACD=θ(θ为锐角),当AB最小时,用θ表示区域CDE的面积S,并求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,an+1=
(1)证明:数列{a2n }是等比数列;
(2)求a2n及a2n1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c分别是△ABC的角A,B,C所对的边,且c=2,C=
(1)若△ABC的面积等于 ,求a,b;
(2)若sinC+sin(B﹣A)=2sin2A,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x3+3ax2+bx+a2(a>1)在x=﹣1时的极值为0.求常数a,b的值并求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:(x+2)2+y2=5,直线l:mx﹣y+1+2m=0,m∈R.
(1)求证:对m∈R,直线l与圆C总有两个不同的交点A、B;
(2)求弦AB的中点M的轨迹方程,并说明其轨迹是什么曲线;
(3)是否存在实数m,使得圆C上有四点到直线l的距离为 ?若存在,求出m的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= +ax,x>1.
(1)若函数f(x)在 处取得极值,求a的值;
(2)若方程(2x﹣m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在[﹣1,1]上的奇函数,f(﹣1)=﹣1,且对任意a,b∈[﹣1,1],当a≠b时,都有
(1)解不等式f
(2)若f(x)≤m2﹣2km+1对所有x∈[﹣1,1],k∈[﹣1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案