分析 (1)利用二倍角公式化简可得B的大小.
(2)利用三角形内角和定理消去一个角,转化为三角函数有界性的问题求解范围即可.
解答 解:(1)由sinB+$\sqrt{2}$sin$\frac{B}{2}$=1-cosB.
可得:2sin$\frac{B}{2}$cos$\frac{B}{2}$+$\sqrt{2}$sin$\frac{B}{2}$=1-(1-2$si{n}^{2}\frac{B}{2}$)
?2cos$\frac{B}{2}$+$\sqrt{2}$=2sin$\frac{B}{2}$
?$\sqrt{2}$=2$\sqrt{2}$sin($\frac{B}{2}-\frac{π}{4}$)
?sin($\frac{B}{2}-\frac{π}{4}$)=$\frac{1}{2}$,
∵0<B<π,
∴0<$\frac{B}{2}$<π,
∴$-\frac{π}{4}$<$\frac{B}{2}$$-\frac{π}{4}$<$\frac{π}{4}$,
∴sin($\frac{B}{2}-\frac{π}{4}$)=sin$\frac{π}{6}$
∴B=$\frac{5π}{6}$;
(2)由(1)可得B=$\frac{5π}{6}$,
∴A+C=$\frac{π}{6}$,
那么:sinA+cosC=sinA+cos($\frac{π}{6}$-A)=$\frac{3}{2}$sinA$+\frac{\sqrt{3}}{2}$cosA=$\sqrt{3}$sin(A+$\frac{π}{6}$),
∵0<A<$\frac{π}{6}$,
∴$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{π}{3}$,
sin(A+$\frac{π}{6}$)∈($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),
∴sinA+cosC的取值范围是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).
点评 本题考查了二倍角公式化简能力和三角形内角和定理的灵活运用,利用三角函数的有界性求解取值范围问题.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,e) | B. | [e,+∞) | C. | [$\frac{3}{2e}$,3] | D. | (2,e] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\underset{lim}{x→∞}$$\frac{sinx}{x}$=1 | B. | $\underset{lim}{x→0}$$\frac{sinx}{x}$=0 | C. | $\underset{lim}{x→0}$xsin$\frac{1}{x}$=1 | D. | $\underset{lim}{x→∞}$xsin$\frac{1}{x}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,2) | B. | [$\frac{4}{3}$,2) | C. | ($\frac{4}{3}$,2) | D. | [$\frac{4}{3}$,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1] | B. | (-1,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,1) | C. | (-∞,-$\frac{\sqrt{3}}{2}$)∪($\frac{\sqrt{3}}{2}$,+∞) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com