精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=|x-1|+|x-a|(a>0),其最小值为3.
(1)求实数a的值;
(2)若关于x的不等式f(x)+|x|>m2-2m对于任意的x∈R恒成立,求实数m的取值范围.

分析 (1)求出f(x)的最小值,得到关于a的方程,求出a的值即可;
(2)根据不等式的性质,问题转化为m2-2m<3,解出即可.

解答 解:(1)f(x)=|x-1|+|x-a|≥|a-1|,
故|a-1|=3,解得:a=-2或4,
由a>0,得a=4;
(2)由(1)得f(x)=|x-1|+|x-4|,
x≥4时,f(x)=x-1+x-4=2x-5≥3,
1<x<4时,f(x)=x-1-x+4=3,
x≤1时,f(x)=1-x-x+4=-2x+5≥3,
∴f(x)+|x|≥3,当x=0时”=“成立,
故m2-2m<3即(m+1)(m-3)<0,解得:-1<m<3,
故m的范围是(-1,3).

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设Sn是公差不为0的等差数列{an}的前n项和,若a1,a2,a4成等比数列,则$\frac{S_4}{S_2}$的值为$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的各项均为正数,且满足a1=1,$\frac{1}{{a}_{n}^{2}}$-$\frac{1}{{a}_{n-1}^{2}}$=1(n≥2,n∈N*),则a1024=(  )
A.$\frac{\sqrt{2}}{16}$B.$\frac{1}{16}$C.$\frac{\sqrt{2}}{32}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若同时抛掷两枚骰子,则向上的点数之差的绝对值为3的概率是$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系xOy中,A(2,4),B(-1,2),C,D为动点,
(1)若C(3,1),求平行四边形ABCD的两条对角线的长度
(2)若C(a,b),且$\overrightarrow{CD}=(3,1)$,求$\overrightarrow{AC}•\overrightarrow{BD}$取得最小值时a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在三角形ABC中,角A、B、C的对边分别为a,b,c,a=4bcosC,$sinC=\frac{{3\sqrt{10}}}{10}$
(1)求角B 的值;
(2)若$b=\sqrt{5}$,求三角形ABC 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,CD∥AB,AD=DC=$\frac{1}{2}$AB.
(1)若M是PB的中点,求证:CM∥平面PAD;
(2)若AD⊥AB,BC⊥PC,求证:平面PAC⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系内,区域M满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤1\end{array}$区域N满足$\left\{\begin{array}{l}0≤x≤π\\ 0≤y≤sinx\end{array}$则向区域M内投一点,落在区域N内的概率是(  )
A.$\frac{2}{π}$B.$\frac{π}{4}$C.2-$\frac{2}{π}$D.2-$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据图中抽样调查的数据,回答下列问题:
(1)试估算该校高三年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求当学生获得的等级成绩的平均分大于90分时,高三学生的考前心理稳定,整体过关,请问该校高三年级目前学生的考前心理稳定情况是否整体过关?
(3)以每个学生的心理都培养成为健康状态为目标,学校决定对成绩等级为E的16名学生(其中男生4人,女生12人)进行特殊的一对一帮扶培训,从按分层抽样抽取的4人中任意抽取2名,求恰好抽到1名男生的概率..

查看答案和解析>>

同步练习册答案