精英家教网 > 高中数学 > 题目详情

【题目】根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为an和bn(单位:辆),其中an= ,bn=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差.
(1)求该地区第4个月底的共享单车的保有量;
(2)已知该地共享单车停放点第n个月底的单车容纳量Sn=﹣4(n﹣46)2+8800(单位:辆).设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?

【答案】
(1)解:∵an= ,bn=n+5

∴a1=5×14+15=20

a2=5×24+15=95

a3=5×34+15=420

a4=﹣10×4+470=430

b1=1+5=6

b2=2+5=7

b3=3+5=8

b4=4+5=9

∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,

前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,

∴该地区第4个月底的共享单车的保有量为965﹣30=935


(2)解:令an≥bn,显然n≤3时恒成立,

当n≥4时,有﹣10n+470≥n+5,解得n≤

∴第42个月底,保有量达到最大.

当n≥4,{an}为公差为﹣10等差数列,而{bn}为等差为1的等比数列,

∴到第42个月底,单车保有量为 ×39+535﹣ ×42= ×39+535﹣ ×42=8782.

S42=﹣4×16+8800=8736.

∵8782>8736,

∴第42个月底单车保有量超过了容纳量


【解析】(1)计算出{an}和{bn}的前4项和的差即可得出答案;(2)令an≥bn得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的三视图如图所示,则四棱锥P﹣ABCD的四个侧面中面积最大的是(
A.3
B.2
C.6
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为( ) 成绩分析表

平均成绩

96

96

85

85

标准差s

4

2

4

2


A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设A(x1 , y1),B(x2 , y2)是椭圆 上的两点,已知向量 =( ), =( ),若 =0且椭圆的离心率e= ,短轴长为2,O为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四个函数:①y=﹣x,②y=﹣ ,③y=x3 , ④y=x ,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的四棱锥 中,四边形ABCD为正方形, 平面PAB,且 分别为 的中点, .

证明:
(1) ;
(2)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,向量 垂直,且 .
(1)求数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3﹣2ex2+mx﹣lnx,记g(x)= ,若函数g(x)至少存在一个零点,则实数m的取值范围是(
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2 ,e2+ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中, ,若不等式 恒成立,则实数t的取值范围是

查看答案和解析>>

同步练习册答案